cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260435 Permutation mapping from Lucky sieve to Ludic sieve: a(1) = 1, for n > 1: a(n) = A255127(A260438(n), A260439(n)).

This page as a plain text file.
%I A260435 #15 Aug 02 2015 17:53:18
%S A260435 1,2,3,4,9,6,5,8,7,10,15,12,11,14,13,16,21,18,19,20,17,22,27,24,23,26,
%T A260435 31,28,33,30,25,32,29,34,39,36,37,38,35,40,45,42,41,44,55,46,51,48,43,
%U A260435 50,47,52,57,54,73,56,59,58,63,60,49,62,53,64,69,66,61,68,67,70,75,72,71,74,77,76,81,78,83,80,65,82,87,84,101,86,89,88
%N A260435 Permutation mapping from Lucky sieve to Ludic sieve: a(1) = 1, for n > 1: a(n) = A255127(A260438(n), A260439(n)).
%C A260435 a(n) tells which number in array A255127 (constructed from Ludic sieve) is at the same position where n is in array A255551 (constructed from Lucky sieve). This permutation fixes all even numbers because both arrays have A005843 as their topmost row.
%H A260435 Antti Karttunen, <a href="/A260435/b260435.txt">Table of n, a(n) for n = 1..10104</a>
%H A260435 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%H A260435 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%F A260435 Other identities. For all n >= 1:
%F A260435 a(A000959(n+1)) = A003309(n+2). [Maps Lucky numbers to odd Ludic numbers.]
%F A260435 a(2n) = 2n.
%F A260435 As a composition of related permutations:
%F A260435 a(n) = A255127(A255552(n)).
%F A260435 a(n) = A255407(A255554(n)).
%o A260435 (Scheme) (define (A260435 n) (if (<= n 1) n (A255127bi (A260438 n) (A260439 n)))) ;; Code for A255127bi given in A255127.
%Y A260435 Inverse: A260436.
%Y A260435 Cf. A000959, A003309, A255127, A260438, A260439.
%Y A260435 Similar or related permutations: A255407, A255552, A255554, A249817, A249818, A260741 (a more recursed variant).
%K A260435 nonn
%O A260435 1,2
%A A260435 _Antti Karttunen_, Jul 30 2015