A260465 a(n) is the smallest number not already in the sequence such that a(n)^3 begins with n.
1, 3, 7, 16, 8, 4, 9, 2, 21, 10, 48, 5, 11, 52, 25, 55, 12, 57, 27, 59, 6, 61, 62, 29, 63, 64, 14, 66, 31, 67, 68, 32, 15, 70, 33, 154, 72, 73, 34, 74, 161, 35, 76, 164, 77, 36, 78, 169, 17, 37, 80, 174, 81, 38, 82, 178, 83, 18, 39, 182, 85, 184, 86, 40, 87, 188, 189, 19, 191, 89, 193, 90, 194, 42, 91, 197, 92, 199, 43
Offset: 1
Links
- Derek Orr, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A018852.
Programs
-
PARI
v=[]; k=1; while(#v<100, d=digits(k^3); D=digits(#v+1); if(#D<=#d, c=1; for(i=1, #D, if(D[i]!=d[i], c=0; break)); if(c&&!vecsearch(vecsort(v), k), v=concat(v, k); k=0)); k++); v
Formula
a(n) >= n^(1/3) for all n > 0. If a(n) = n^(1/3), then n is a cube. Note the converse is false: a(27) = 14.
Comments