This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260466 #11 Aug 17 2015 08:23:25 %S A260466 0,0,1,3,5,7,10,12,14,16,20,22,24,26,28,32,34,36,38,40,43,47,49,51,53, %T A260466 55,57,59,63,65,67,69,71,73,75,79,83,85,87,89,91,93,95,97,99,103,105, %U A260466 107,109,111,113,115,117,119,121,125,129,131,133,135,137,139,141 %N A260466 Number of integers in Pascal's triangle strictly between 1 and n. %C A260466 Ignoring the first two terms of A003016, a(n) is partial sums of A003016. %C A260466 a(n) >= 2n-5 trivially; for n>=7, a(n) > 2n-5. %e A260466 For n=7, the members of Pascal's triangle strictly between 1 and 7 are C(2,1), C(3,1), C(3,2), C(4,1), C(4,2), C(4,3), C(5,1), C(5,4), C(6,1), and C(6,5). So a(7)=10. %t A260466 t = 0 * Range[101]; Do[x = Binomial[a, b]; If[1 < x <= 100, t[[x + 1]]++], {a, 100}, {b, a}]; Accumulate@ t (* _Giovanni Resta_, Aug 16 2015 *) %o A260466 (PARI) nbn(n) = {my(nb = 0); for (j=1, n, for (k=1, n, b = binomial(j, k); if ((b>1) && (b<=n), nb++););); nb;} \\ _Michel Marcus_, Jul 30 2015 %Y A260466 Cf. A003016, A007318. %K A260466 nonn %O A260466 1,4 %A A260466 _Alex Jordan_, Jul 26 2015 %E A260466 More terms from _Michel Marcus_, Jul 30 2015