cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260482 Dragon curve triple point numerators: When a(n) in 0, 1, 2, ..., (5*2^k), Dragon(a(n)/(5*2^k)) has exactly three distinct, rational preimages.

Original entry on oeis.org

7, 13, 14, 26, 27, 28, 33, 37, 47, 52, 53, 54, 56, 57, 66, 67, 69, 71, 73, 74, 77, 87, 93, 94, 97, 103, 104, 106, 107, 108, 109, 111, 112, 113, 114, 123, 127, 132, 133, 134, 138, 139, 141, 142, 146, 147, 148, 149, 151, 153, 154, 157, 167, 173, 174, 177, 186, 187, 188, 189, 191, 193, 194, 197, 206, 207, 208, 209, 211, 212, 213, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228
Offset: 1

Views

Author

Bill Gosper, Jul 26 2015

Keywords

Comments

It appears that Dragon(a(n)/(5*2^k)) = Dragon(b/(15*2^k)) = Dragon(c/(15*2^k)) for some b and c.
See dragun in the MATHEMATICA section for an exact evaluator of the continuous, spacefilling Dragon function which maps [0,1] into C, and undrag, its multivalued inverse.
The first differences of this sequence appear to comprise only 1,2,3,4,5,6,9, and 10.
It appears that every Dragon triple point is an image of a(n)/(5*2^k) for some n and k.
The set of values DRAG(m/(14*2^k)) with m in {0, 1, 2, ..., 14*2^k} also contains points at least triple whenever k > 0. See Examples. - Bradley Klee, Aug 14 2015
Using quaternary expansions of planar coordinates and a substitution tiling, one can prove the following: If a point along the Dragon curve has rational planar coordinates, it is visited one, two, or three times. The corollary is: All rational points at least triple are exactly triple. - Bradley Klee, Aug 18 2015

Examples

			a(8) = 47, so if Dragon(0) = 0, Dragon(1) = 1, Dragon(1/3) = 1/5+2i/5, then
Dragon(133/240) = Dragon(47/80) = Dragon(143/240) = 2/3+5i/12 and
Dragon(133/480) = Dragon(47/160) = Dragon(143/480) = 1/8+13i/24 and ...
Dragon(133/3840) = Dragon(47/1280) = Dragon(143/3840) = -1/6-5i/48 and ...
DRAG(13/28) = DRAG(17/28)= DRAG(19/28) = 3/5 + 3/10 i. - _Bradley Klee_, Aug 11 2015
		

Crossrefs

Programs

  • Mathematica
    (* by Julian Ziegler Hunts *)
    piecewiserecursivefractal[x_, f_, which_, iters_, fns_] := piecewiserecursivefractal[x, g_, which, iters, fns] = ((piecewiserecursivefractal[x, h_, which, iters, fns] := Block[{y}, y /. Solve[f[y] == h[y], y]]); Union @@ ((fns[[#]] /@ piecewiserecursivefractal[iters[[#]][x], Composition[f, fns[[#]]], which, iters, fns]) & /@ which[x]));
    dragun[t_] := piecewiserecursivefractal[t, Identity, Piecewise[{{{1}, 0 <= # <= 1/2}, {{2}, 1/2 <= # <= 1}}, {}] &, {2*# &, 2*(1 - #) &}, {(1 + I)*#/2 &, (I - 1)*#/2 + 1 &}]
    undrag[z_] := piecewiserecursivefractal[z, Identity, If[-(1/3) <= Re[#] <= 7/6 && -(1/3) <= Im[#] <= 2/3, {1, 2}, {}] &, {#*(1 - I) &, (1 - #)*(1 + I) &}, {#/2 &, 1 - #/2 &}]
    Do[If[Length[undrag[dragun[k/80][[1]]]] > 2, Print[k]], {k, 0, 68}]
    (* same as, e.g. *)
    Do[If[Length[undrag[dragun[k/20480][[1]]]] > 2, Print[k]], {k, 0, 68}]
    (* Not {k,0,69} because undrag@@dragun[69/20480] = {69/20480, 211/61440, 341/61440} but undrag@@dragun[69/80] = {69/80, 211/240}, since 341/240 > 1, outside the Dragon's preimage = [0,1]. Corrected by Bill Gosper, Feb 18 2018. *)

Extensions

Name simplified by Bradley Klee, Aug 18 2015