A260482 Dragon curve triple point numerators: When a(n) in 0, 1, 2, ..., (5*2^k), Dragon(a(n)/(5*2^k)) has exactly three distinct, rational preimages.
7, 13, 14, 26, 27, 28, 33, 37, 47, 52, 53, 54, 56, 57, 66, 67, 69, 71, 73, 74, 77, 87, 93, 94, 97, 103, 104, 106, 107, 108, 109, 111, 112, 113, 114, 123, 127, 132, 133, 134, 138, 139, 141, 142, 146, 147, 148, 149, 151, 153, 154, 157, 167, 173, 174, 177, 186, 187, 188, 189, 191, 193, 194, 197, 206, 207, 208, 209, 211, 212, 213, 214, 216, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228
Offset: 1
Examples
a(8) = 47, so if Dragon(0) = 0, Dragon(1) = 1, Dragon(1/3) = 1/5+2i/5, then Dragon(133/240) = Dragon(47/80) = Dragon(143/240) = 2/3+5i/12 and Dragon(133/480) = Dragon(47/160) = Dragon(143/480) = 1/8+13i/24 and ... Dragon(133/3840) = Dragon(47/1280) = Dragon(143/3840) = -1/6-5i/48 and ... DRAG(13/28) = DRAG(17/28)= DRAG(19/28) = 3/5 + 3/10 i. - _Bradley Klee_, Aug 11 2015
Links
- Brady Haran and Don Knuth, Wrong turn on the Dragon, Numberphile video (2014)
- Wikipedia, Dragon curve
- Bill Gosper, Illustration
- Bill Gosper, Illustration
- Bill Gosper, Illustration
Programs
-
Mathematica
(* by Julian Ziegler Hunts *) piecewiserecursivefractal[x_, f_, which_, iters_, fns_] := piecewiserecursivefractal[x, g_, which, iters, fns] = ((piecewiserecursivefractal[x, h_, which, iters, fns] := Block[{y}, y /. Solve[f[y] == h[y], y]]); Union @@ ((fns[[#]] /@ piecewiserecursivefractal[iters[[#]][x], Composition[f, fns[[#]]], which, iters, fns]) & /@ which[x])); dragun[t_] := piecewiserecursivefractal[t, Identity, Piecewise[{{{1}, 0 <= # <= 1/2}, {{2}, 1/2 <= # <= 1}}, {}] &, {2*# &, 2*(1 - #) &}, {(1 + I)*#/2 &, (I - 1)*#/2 + 1 &}] undrag[z_] := piecewiserecursivefractal[z, Identity, If[-(1/3) <= Re[#] <= 7/6 && -(1/3) <= Im[#] <= 2/3, {1, 2}, {}] &, {#*(1 - I) &, (1 - #)*(1 + I) &}, {#/2 &, 1 - #/2 &}] Do[If[Length[undrag[dragun[k/80][[1]]]] > 2, Print[k]], {k, 0, 68}] (* same as, e.g. *) Do[If[Length[undrag[dragun[k/20480][[1]]]] > 2, Print[k]], {k, 0, 68}] (* Not {k,0,69} because undrag@@dragun[69/20480] = {69/20480, 211/61440, 341/61440} but undrag@@dragun[69/80] = {69/80, 211/240}, since 341/240 > 1, outside the Dragon's preimage = [0,1]. Corrected by Bill Gosper, Feb 18 2018. *)
Extensions
Name simplified by Bradley Klee, Aug 18 2015
Comments