cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260483 Beatty sequence for e^(1/Pi) = A179706.

This page as a plain text file.
%I A260483 #25 Feb 16 2025 08:33:26
%S A260483 1,2,4,5,6,8,9,10,12,13,15,16,17,19,20,21,23,24,26,27,28,30,31,32,34,
%T A260483 35,37,38,39,41,42,43,45,46,48,49,50,52,53,54,56,57,59,60,61,63,64,65,
%U A260483 67,68,70,71,72,74,75,76,78,79,81,82,83,85
%N A260483 Beatty sequence for e^(1/Pi) = A179706.
%C A260483 The initial 634 terms are the same as the formula: a(n) = floor((11*n - 1) / 8). - _Simon Strandgaard_, Sep 24 2021
%H A260483 Karl V. Keller, Jr., <a href="/A260483/b260483.txt">Table of n, a(n) for n = 1..1000</a>
%H A260483 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>
%H A260483 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e.html">e</a>
%H A260483 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi.html">Pi</a>
%H A260483 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A260483 a(n) = floor(n*e^(1/Pi)).
%e A260483 For n = 5, floor(5*e^(1/Pi)) = 6.
%t A260483 Array[Floor[#*E^(1/Pi)] &, 62] (* _Michael De Vlieger_, Sep 28 2021 *)
%o A260483 (Python)
%o A260483 from sympy import  E, pi, floor
%o A260483 for n in range(1,101): print(floor(n*E**(1/pi)), end=', ')
%o A260483 (PARI) vector(80, n, floor(n*exp(1/Pi))) \\ _Michel Marcus_, Aug 05 2015
%Y A260483 Cf. A179706 (e^(1/Pi)), A260484 (complement).
%K A260483 nonn
%O A260483 1,2
%A A260483 _Karl V. Keller, Jr._, Jul 26 2015