This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260484 #21 Feb 16 2025 08:33:26 %S A260484 3,7,11,14,18,22,25,29,33,36,40,44,47,51,55,58,62,66,69,73,77,80,84, %T A260484 88,91,95,99,102,106,110,113,117,121,124,128,132,135,139,143,146,150, %U A260484 154,157,161,165,168,172,176,179,183,187,190,194,198 %N A260484 Complement of the Beatty sequence for e^(1/Pi) = A179706. %H A260484 Karl V. Keller, Jr., <a href="/A260484/b260484.txt">Table of n, a(n) for n = 1..1000</a> %H A260484 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>. %H A260484 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e.html">e</a>. %H A260484 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi.html">Pi</a>. %H A260484 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>. %F A260484 a(n) = floor(n*e^(1/Pi)/(e^(1/Pi)-1)). %e A260484 For n = 5, floor(5*e^(1/Pi)/(e^(1/Pi)-1)) = 18. %t A260484 Floor[Range[100]/(1 - Exp[-1/Pi])] (* _Paolo Xausa_, Jul 17 2024 *) %o A260484 (Python) %o A260484 from sympy import E, pi, floor %o A260484 for n in range(1,101): print(floor(n*E**(1/pi)/(E**(1/pi)-1)), end=', ') %o A260484 (PARI) vector(80, n, floor(n*exp(1/Pi)/(exp(1/Pi)-1))) \\ _Michel Marcus_, Aug 05 2015 %Y A260484 Cf. A179706 (e^(1/Pi)), A260483 (complement). %K A260484 nonn %O A260484 1,1 %A A260484 _Karl V. Keller, Jr._, Jul 26 2015