This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260513 #20 May 14 2024 17:00:49 %S A260513 1,9,46,164,460,1091,2289,4376,7779,13045,20856,32044,47606,68719, %T A260513 96755,133296,180149,239361,313234,404340,515536,649979,811141, %U A260513 1002824,1229175,1494701,1804284,2163196,2577114,3052135,3594791,4212064,4911401,5700729,6588470 %N A260513 a(n) = (8*n+13*n^3+3*n^5)/24; also the sum of triangular numbers taken in successive groups of increasing size (see Example). %H A260513 Harvey P. Dale, <a href="/A260513/b260513.txt">Table of n, a(n) for n = 1..1000</a> %H A260513 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A260513 From _Colin Barker_, Aug 07 2015: (Start) %F A260513 a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6. %F A260513 G.f.: x*(x^4+3*x^3+7*x^2+3*x+1) / (x-1)^6. (End) %F A260513 E.g.f.: exp(x)*x*(24 + 84*x + 88*x^2 + 30*x^3 + 3*x^4)/24. - _Stefano Spezia_, May 14 2024 %e A260513 The first ten triangular numbers are 1,3,6,10,15,21,28,36,45,and 55. Take them in groups, respectively, of 1, 2, 3, and 4 = (1), (3, 6), (10, 15, 21), and (28, 36, 45, 55). Summing each group separately = 1, 9, 46, 164. %t A260513 Table[1/24*(8*x+13*x^3+3*x^5),{x,50}] %t A260513 Module[{nn=40},Total/@TakeList[Accumulate[Range[(nn(nn+1))/2]],Range[nn]]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,9,46,164,460,1091},40] (* _Harvey P. Dale_, Aug 09 2023 *) %o A260513 (PARI) Vec(x*(x^4+3*x^3+7*x^2+3*x+1)/(x-1)^6 + O(x^100)) \\ _Colin Barker_, Aug 07 2015 %Y A260513 Cf. A000217. %K A260513 nonn,easy %O A260513 1,2 %A A260513 _Harvey P. Dale_, Jul 27 2015