A260385 Numbers such that n divides A260519(n), where A260519(n) is the concatenation of the positions of the digits 0, 1, ..., 9 in n, positions counted from the right, and 0 if a given digit does not occur.
1, 2, 4, 5, 10, 12, 15, 20, 24, 25, 30, 32, 40, 50, 56, 58, 59, 60, 69, 75, 100, 112, 120, 125, 150, 170, 175, 200, 220, 240, 250, 275, 276, 300, 320, 325, 366, 399, 400, 440, 500, 510, 525, 600, 660, 726, 775, 1000, 1250, 2000, 2200, 2360, 2413, 2500, 3142, 3200
Offset: 1
Examples
Consider number 56. We have no digit 0, 1, 2, 3 and 4, one digit 5 in position 2, one digit 6 in position 1 and no digit 7, 8 and 9. Therefore we get 0000021000 and 21000 / 56 = 375. Consider 774452318582. We have no digit 0, one digit 1 in position 5, two digits 2 in position 1 and 7, one digit 3 in position 6, two digits 4 in position 9 and 10, two digits 5 in position 3 and 8, no digit 6, two digits 7 in position 11 and 12, two digits 8 in position 2 and 4 and no digit 9. Therefore 774452318582 is transformed in 51769103801112240. But 51769103801112240 / 774452318582 = 66846.08278... Therefore 774452318582 is not part of the sequence.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..160
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,j,k,ok,n; for n from 1 to q do a:=convert(n,base,10); b:=0; for k from 0 to 9 do ok:=0; for j from 1 to nops(a) do if a[j]=k then ok:=1; b:=b*10^(ilog10(j)+1)+j; fi; od; if ok=0 then b:=10*b; fi; od; if type(b/n,integer) then print(n); fi; od; end: P(10^9);
-
PARI
for(n=1,9e9,A260519(n)%n||print1(n",")) \\ M. F. Hasler, Jul 28 2015
Comments