cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260532 Coefficients in asymptotic expansion of sequence A051295.

This page as a plain text file.
%I A260532 #18 Aug 05 2015 04:05:27
%S A260532 1,2,7,31,165,1025,7310,59284,543702,5618267,65200918,846462826,
%T A260532 12229783811,195394019337,3427472046792,65526442181293,
%U A260532 1355785469986828,30166624979467869,717769036033944699,18174105506247664633,487655384740384445407,13816406622559942660420
%N A260532 Coefficients in asymptotic expansion of sequence A051295.
%H A260532 Vaclav Kotesovec, <a href="/A260532/b260532.txt">Table of n, a(n) for n = 0..134</a>
%H A260532 Richard J. Martin, and Michael J. Kearney, <a href="http://dx.doi.org/10.1007/s00493-014-3183-3">Integral representation of certain combinatorial recurrences</a>, Combinatorica: 35:3 (2015), 309-315.
%F A260532 a(k) ~ 2 * (k-1)! / (log(2))^k.
%F A260532 a(n) = Sum_{k=0..n} A134378(k) * Stirling2(n, k). - _Vaclav Kotesovec_, Aug 04 2015
%e A260532 A051295(n)/(n-1)! ~ 1 + 2/n + 7/n^2 + 31/n^3 + 165/n^4 + 1025/n^5 + 7310/n^6 + ...
%t A260532 nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x)*x / (ExpIntegralEi[1/x] - E^(1/x))^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]] * StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}] (* _Vaclav Kotesovec_, Aug 03 2015 *)
%Y A260532 Cf. A051295, A134378, A256168, A260491, A260503, A260530, A260578.
%K A260532 nonn
%O A260532 0,2
%A A260532 _Vaclav Kotesovec_, Jul 28 2015