cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260533 Table of partition coefficients read by rows. The coefficient of a partition p is Product_{j=1..length(p)-1} C(p[j], p[j+1]). Row n lists the coefficients of the partitions of n in the ordering A080577, for n>=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 5, 6, 4, 1, 6, 3, 1, 2, 2, 1, 1, 6, 10, 5, 4, 12, 4, 3, 3, 6, 3, 2, 2, 2, 1, 1, 7, 15, 6, 10, 20, 5, 1, 12, 6, 12, 4, 3, 3, 6, 6, 3, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Peter Luschny, Jul 28 2015

Keywords

Comments

The triangle is a refinement of Pascal's triangle A007318.

Examples

			The signed version of the triangle starts:
[1]
[-1, 1]
[1, -2, 1]
[-1, 3, -1, -2, 1]
[1, -4, 3, 3, -2, -2, 1]
[-1, 5, -6, -4, 1, 6, 3, -1, -2, -2, 1]
Adding adjacent coefficients with equal sign reduces the triangle to the matrix inverse of Pascal's triangle (A130595).
.
The q-polynomials defined by Cigler start:
[0]  1;
[1]  1, q;
[2]  1, 2*q, q^3;
[3]  1, 3*q, q^2+2*q^3,   q^6;
[4]  1, 4*q, 3*q^2+3*q^3, 2*q^4+2*q^6,     q^10;
[5]  1, 5*q, 6*q^2+4*q^3, q^3+6*q^4+3*q^6, q^6+2*q^7+2*q^10, q^15;
		

Crossrefs

Cf. A007318, A080577, A130595, A269941 (expanded form).

Programs

  • Maple
    with(combstruct): with(ListTools):
    PartitionCoefficients := proc(n) local L, iter, p;
    iter := iterstructs(Partition(n)): L := []:
    while not finished(iter) do
       p := Reverse(nextstruct(iter)):
       L := [mul(binomial(p[j], p[j+1]), j=1..nops(p)-1), op(L)]
    od end:
    for n from 1 to 6 do PartitionCoefficients(n) od;
    # Alternative, using Cigler's recurrence for the q-polynomials:
    C := proc(n, k, q) local j;
    if k = 0 then q^binomial(n + 1, 2) elif n = 0 then n^k else
    add(q^binomial(j + 1, 2)*C(n - j - 1, k - 1, q), j = 0..n - k) fi end:
    p := n -> local k; add(C(n, n - k, q)*x^k, k = 0..n):
    row := n -> local k; seq(sort(coeff(expand(p(n)), x, k), [q], ascending), k=0..n):
    for n from 0 to 5 do row(n) od;  # Peter Luschny, Aug 24 2024
  • Sage
    PartitionCoeff = lambda p: mul(binomial(p[j], p[j+1]) for j in range(len(p)-1))
    PartitionCoefficients = lambda n: [PartitionCoeff(p) for p in Partitions(n)]
    for n in (1..7): print(PartitionCoefficients(n))

Formula

Let P = Partitions(n, k) denote the set of partitions p of n with largest part k. Then Sum_{p in P} PartitionCoefficient(p) = binomial(n-1,k-1) for n>=0 and k>=0 (assuming binomial(-1,-1) = 1).