cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260534 Square array read by ascending antidiagonals, T(n,k) = Sum_{j=0..k} n^j*(C(k-j,j) mod 2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 5, 1, 7, 2, 1, 1, 1, 6, 1, 13, 5, 3, 1, 1, 1, 7, 1, 21, 10, 11, 1, 1, 1, 1, 8, 1, 31, 17, 31, 1, 4, 1, 1, 1, 9, 1, 43, 26, 69, 1, 23, 3, 1, 1, 1, 10, 1, 57, 37, 131, 1, 94, 21, 5, 1, 1, 1, 11
Offset: 0

Views

Author

Peter Luschny, Sep 20 2015

Keywords

Comments

A parametrization of Stern's diatomic series (which is here T(1,k)). (For other generalizations of Dijkstra's fusc function see the Luschny link.)

Examples

			Array starts:
n\k[0, 1,  2, 3,  4,  5,   6, 7,    8,    9,    10]
[0] 1, 1,  1, 1,  1,  1,   1, 1,    1,    1,     1, ...
[1] 1, 1,  2, 1,  3,  2,   3, 1,    4,    3,     5, ... [A002487]
[2] 1, 1,  3, 1,  7,  5,  11, 1,   23,   21,    59, ... [A101624]
[3] 1, 1,  4, 1, 13, 10,  31, 1,   94,   91,   355, ...
[4] 1, 1,  5, 1, 21, 17,  69, 1,  277,  273,  1349, ... [A101625]
[5] 1, 1,  6, 1, 31, 26, 131, 1,  656,  651,  3881, ...
[6] 1, 1,  7, 1, 43, 37, 223, 1, 1339, 1333,  9295, ...
[7] 1, 1,  8, 1, 57, 50, 351, 1, 2458, 2451, 19559, ...
[8] 1, 1,  9, 1, 73, 65, 521, 1, 4169, 4161, 37385, ...
-,-,-,-,A002061,A002522,A071568,-,-,A059826,-,A002523,
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> add(modp(binomial(k-j,j),2)*n^j, j=0..k):
    seq(lprint(seq(T(n,k),k=0..10)),n=0..5);
  • Mathematica
    Table[If[(n - k) == 0, 1, Sum[(n - k)^j Mod[Binomial[k - j, j], 2], {j, 0, k}]], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, Sep 21 2015 *)
  • Python
    def A260534_T(n,k):
        return sum(0 if ~(k-j) & j else n**j for j in range(k+1)) # Chai Wah Wu, Feb 08 2016