A260534 Square array read by ascending antidiagonals, T(n,k) = Sum_{j=0..k} n^j*(C(k-j,j) mod 2).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 5, 1, 7, 2, 1, 1, 1, 6, 1, 13, 5, 3, 1, 1, 1, 7, 1, 21, 10, 11, 1, 1, 1, 1, 8, 1, 31, 17, 31, 1, 4, 1, 1, 1, 9, 1, 43, 26, 69, 1, 23, 3, 1, 1, 1, 10, 1, 57, 37, 131, 1, 94, 21, 5, 1, 1, 1, 11
Offset: 0
Examples
Array starts: n\k[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [1] 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, ... [A002487] [2] 1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, ... [A101624] [3] 1, 1, 4, 1, 13, 10, 31, 1, 94, 91, 355, ... [4] 1, 1, 5, 1, 21, 17, 69, 1, 277, 273, 1349, ... [A101625] [5] 1, 1, 6, 1, 31, 26, 131, 1, 656, 651, 3881, ... [6] 1, 1, 7, 1, 43, 37, 223, 1, 1339, 1333, 9295, ... [7] 1, 1, 8, 1, 57, 50, 351, 1, 2458, 2451, 19559, ... [8] 1, 1, 9, 1, 73, 65, 521, 1, 4169, 4161, 37385, ... -,-,-,-,A002061,A002522,A071568,-,-,A059826,-,A002523,
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10010
- Peter Luschny, Rational Trees and Binary Partitions.
Programs
-
Maple
T := (n,k) -> add(modp(binomial(k-j,j),2)*n^j, j=0..k): seq(lprint(seq(T(n,k),k=0..10)),n=0..5);
-
Mathematica
Table[If[(n - k) == 0, 1, Sum[(n - k)^j Mod[Binomial[k - j, j], 2], {j, 0, k}]], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, Sep 21 2015 *)
-
Python
def A260534_T(n,k): return sum(0 if ~(k-j) & j else n**j for j in range(k+1)) # Chai Wah Wu, Feb 08 2016
Comments