A260555 Primes p such that p = q^2 + 6*r^2 where q and r are also primes.
73, 79, 103, 193, 199, 223, 271, 313, 439, 463, 751, 823, 991, 1039, 1063, 1087, 1303, 1423, 1543, 1567, 1663, 1759, 1783, 1831, 1873, 1999, 2143, 2287, 2383, 2503, 2833, 3343, 3463, 3583, 3631, 3823, 3847, 3943, 4447, 4513, 4639, 4783, 5023, 5167, 5407
Offset: 1
Keywords
Examples
73 is in the sequence because 73 = 7^2 + 6*2^2 and 73, 7 and 2 are all primes.
Links
- Colin Barker, Table of n, a(n) for n = 1..1500
- Ben Green and Mehtaab Sawhney, Primes of the form p^2 + nq^2, arXiv preprint (2024). arXiv:2410.04189 [math.NT]
Programs
-
Mathematica
Select[#1^2 + 6 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 60, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
-
PARI
list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-9)\6), my(t=6*q^2); forprime(p=3, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ Charles R Greathouse IV, Oct 08 2024
Comments