This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260576 #37 Jun 24 2025 00:52:49 %S A260576 1,3,13,327,36673,950117,801495893,5896798453,760999599793, %T A260576 3828797295053127,520910599208391893,2418812764637100821917, %U A260576 793123421312468129647727,6936392582189824489589830053,31170731920863007986026123435697,5284787778858696936313058199017107 %N A260576 Least k such that the product of the first n primes of the form m^2+1 (A002496) divides k^2+1. %C A260576 Conjecture: the sequence is infinite. %C A260576 From _Robert Israel_, Jun 23 2025: (Start) %C A260576 Consider any finite set of primes p(i) = m(i)^2 + 1, i = 1 .. n. %C A260576 Then k^2 + 1 == 0 (mod p(i)) if k == m(i) (mod p(i)). %C A260576 By the Chinese Remainder Theorem, there exists k such that k == m(i) (mod p(i)) %C A260576 for i = 1 .. n. Thus the conjecture is true, and all terms a(n) exist. %C A260576 (End) %C A260576 Let b(n) = Product_{k=1..n} A002496(k): 2, 10, 170, 6290, 635290, ... %C A260576 b(1) divides k^2+1 for k = 1, 3, 5, ... %C A260576 b(2) divides k^2+1 for k = 3, 7, 13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 63, 67, 73, 77, 83, ... %C A260576 b(3) divides k^2+1 for k = 13, 47, 123, 157, 183, 217, 293, 327, 353, 387, 463, 497, 523, ... %C A260576 b(4) divides k^2+1 for k = 327, 1067, 2707, 2843, 3447, 3583, 5223, 5963, 6617, 7357, 8997, 9133, 9737, 9873, ... %C A260576 b(5) divides k^2+1 for k = 36673, 38067, 66347, 141087, 217443, 240087, 292183, 314827, 320463, ... %p A260576 with(numtheory):lst:={2}:nn:=100: %p A260576 for i from 1 to nn do: %p A260576 p:=i^2+1: %p A260576 if isprime(p) %p A260576 then %p A260576 lst:=lst union {p}: %p A260576 else fi: %p A260576 od: %p A260576 pr:=1: %p A260576 for n from 1 to 7 do: %p A260576 pr:=pr*lst[n]:ii:=0: %p A260576 for j from 1 to 10^9 while(ii=0) do: %p A260576 if irem(j^2+1,pr)=0 %p A260576 then %p A260576 ii:=1: %p A260576 printf("%d %d \n",n,j): %p A260576 fi: %p A260576 od: %p A260576 od: %Y A260576 Cf. A002496, A005574. %K A260576 nonn %O A260576 1,2 %A A260576 _Michel Lagneau_, Jul 29 2015 %E A260576 a(8)-a(17) from _Hiroaki Yamanouchi_, Aug 15 2015