This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260580 #12 Feb 16 2025 08:33:26 %S A260580 3,4,5,6,7,8,9,11,10,12,13,14,15,17,16,18,19,20,21,23,24,26,29,22,25, %T A260580 27,30,31,28,33,34,37,32,35,36,39,41,40,42,43,38,44,45,47,48,50,53,51, %U A260580 56,59,46,49,52,54,57,60,61,55,63,64,67,62,65,66,69,71 %N A260580 Table read by rows: n-th row contains numbers not occurring earlier, that can be written as (p+q)/2 where p is the n-th odd prime, q <= p. %C A260580 Length of n-th row = A105047(n+1); %C A260580 T(n,1) = A260485(n); %C A260580 T(n,A105047(n)) = A065091(n). %H A260580 Reinhard Zumkeller, <a href="/A260580/b260580.txt">Rows n = 1..1000 of triangle, flattened</a> %H A260580 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a> %H A260580 Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a> %H A260580 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %e A260580 Let p(n) = A065091(n) = prime(n+1): %e A260580 . n | p(n) | T(n,*) %e A260580 . ----+------+----------------- ------------------------------------------ %e A260580 . 1 | 3 | [3] 3 %e A260580 . 2 | 5 | [4,5] (5+3)/2,5 %e A260580 . 3 | 7 | [6,7] (7+5)/2,7 %e A260580 . 4 | 11 | [8,9,11] (11+5)/2,(11+7)/2,11 %e A260580 . 5 | 13 | [10,12,13] (13+7)/2,(13+11)/2,13 %e A260580 . 6 | 17 | [14,15,17] (17+11)/2,(17+13)/2,17 %e A260580 . 7 | 19 | [16,18,19] (19+13)/2,(19+17)/2,19 %e A260580 . 8 | 23 | [20,21,23] (23+17)/2,(23+19)/2,23 %e A260580 . 9 | 29 | [24,26,29] (29+19)/2,(29+17)/2,29 %e A260580 . 10 | 31 | [22,25,27,30,31] (31+13)/2,(31+19)/2,(31+23)/2,(31+29)/2,31 %e A260580 . 11 | 37 | [28,33,34,37] (37+19)/2,(37+29)/2,(37+31)/2,37 %e A260580 . 12 | 41 | [32,35,36,39,41] (41+23)/2,(41+29)/2,(41+31)/2,(41+37)/2,41 %o A260580 (Haskell) %o A260580 import Data.List.Ordered (union); import Data.List ((\\)) %o A260580 a260580 n k = a260580_tabf !! (n-1) !! (k-1) %o A260580 a260580_row n = a260580_tabf !! (n-1) %o A260580 a260580_tabf = zipWith (\\) (tail zss) zss where %o A260580 zss = scanl union [] a065305_tabl %Y A260580 Cf. A065305, A105047, A065091. %K A260580 nonn,tabf %O A260580 1,1 %A A260580 _Reinhard Zumkeller_, Aug 11 2015