This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260596 #7 Aug 16 2015 17:20:23 %S A260596 1,3,2,4,10,6,5,14,38,22,7,18,54,150,86,8,26,70,214,598,342,9,30,102, %T A260596 278,854,2390,1366,11,34,118,406,1110,3414,9558,5462,12,42,134,470, %U A260596 1622,4438,13654,38230,21846,13,46,166,534,1878,6486,17750,54614,152918,87382 %N A260596 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12, n,k >= 1. %C A260596 Sequence is a permutation of the natural numbers. %C A260596 Is this array the same as the dispersion A191668? %F A260596 T(n,k) = A(n-k+1,k) = (8 + (3*floor((4*(n-k+1) + 1)/3) - 2)*4^k)/12, n >= k >=1. %e A260596 Array A begins: %e A260596 . 1 2 6 22 86 342 1366 5462 21846 87382 %e A260596 . 3 10 38 150 598 2390 9558 38230 152918 611670 %e A260596 . 4 14 54 214 854 3414 13654 54614 218454 873814 %e A260596 . 5 18 70 278 1110 4438 17750 70998 283990 1135958 %e A260596 . 7 26 102 406 1622 6486 25942 103766 415062 1660246 %e A260596 . 8 30 118 470 1878 7510 30038 120150 480598 1922390 %e A260596 . 9 34 134 534 2134 8534 34134 136534 546134 2184534 %e A260596 . 11 42 166 662 2646 10582 42326 169302 677206 2708822 %e A260596 . 12 46 182 726 2902 11606 46422 185686 742742 2970966 %e A260596 . 13 50 198 790 3158 12630 50518 202070 808278 3233110 %e A260596 ... %e A260596 The triangle T(n, k) begins: %e A260596 n\k 1 2 3 4 5 6 7 8 9 10 ... %e A260596 1: 1 %e A260596 2: 3 2 %e A260596 3: 4 10 6 %e A260596 4: 5 14 38 22 %e A260596 5: 7 18 54 150 86 %e A260596 6: 8 26 70 214 598 342 %e A260596 7: 9 30 102 278 854 2390 1366 %e A260596 8: 11 34 118 406 1110 3414 9558 5462 %e A260596 9: 12 42 134 470 1622 4438 13654 38230 21846 %e A260596 10:13 46 166 534 1878 6486 17750 54614 152918 87382 %e A260596 ... Triangle formatted by _Wolfdieter Lang_, Aug 16 2015. %t A260596 (* Array: *) %t A260596 Grid[Table[(8 + (3*Floor[(4*n + 1)/3] - 2)*4^k)/12, {n, 10}, {k, 10}]] %t A260596 (* Array antidiagonals flattened: *) %t A260596 Flatten[Table[(8 + (3*Floor[(4*(n - k) + 5)/3] - 2)*4^k)/12, {n, 10}, {k, n}]] %Y A260596 Cf. A000302, A042965, A016825, A191668. %K A260596 nonn,tabl %O A260596 1,2 %A A260596 _L. Edson Jeffery_, Jul 29 2015 %E A260596 Edited: _Wolfdieter Lang_, Aug 16 2015