This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260597 #13 Jan 10 2022 15:43:45 %S A260597 11,3,37,101,41,271,7,13,239,4649,73,137,333667,12345678910987654321, %T A260597 17636684157301569664903,2799473675762179389994681,1109,4729, %U A260597 2354041513534224607850261,571,3167,10723,439781,2068140300159522133,75401,687437,759077450603 %N A260597 Primes as they occur for the first time as factors of terms of A173426 = concatenation(1,2,...,n,n-1,...,1). %C A260597 Or, distinct elements of A260589 in the order they occur for the first time. %H A260597 M. F. Hasler and Chai Wah Wu, <a href="/A260597/b260597.txt">Table of n, a(n) for n = 1..114</a> (a(n) for n = 1..84 from M. F. Hasler) %e A260597 A173426(1) = 1; A173426(2) = 121 = 11^2 => a(1) = 11. %e A260597 A173426(3) = 12321 = 3^2 37^2 => a(2..3) = (3, 37). %e A260597 A173426(4) = 1234321 = 11^2 101^2 => a(4) = 101. %e A260597 A173426(5) = 123454321 = 41^2 271^2 => a(5..6) = (41, 271). %e A260597 A173426(6) = 12345654321 = 3^2 7^2 11^2 13^2 37^2 => a(7..8) = (7, 13). %o A260597 (PARI) S=[];apply(t->S=setunion(S,t=setminus(Set(t),S));t, vector(30,n,A260589_row(n))) %o A260597 (Python) %o A260597 from sympy import primefactors %o A260597 A260597_list = [] %o A260597 for n in range(1,10): %o A260597 m = primefactors(int(''.join([str(d) for d in range(1,n+1)]+[str(d) for d in range(n-1,0,-1)]))) %o A260597 for p in m: %o A260597 if not p in A260597_list: %o A260597 A260597_list.append(p) # _Chai Wah Wu_, Aug 11 2015 %K A260597 nonn %O A260597 1,1 %A A260597 _M. F. Hasler_, Jul 29 2015