cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260597 Primes as they occur for the first time as factors of terms of A173426 = concatenation(1,2,...,n,n-1,...,1).

This page as a plain text file.
%I A260597 #13 Jan 10 2022 15:43:45
%S A260597 11,3,37,101,41,271,7,13,239,4649,73,137,333667,12345678910987654321,
%T A260597 17636684157301569664903,2799473675762179389994681,1109,4729,
%U A260597 2354041513534224607850261,571,3167,10723,439781,2068140300159522133,75401,687437,759077450603
%N A260597 Primes as they occur for the first time as factors of terms of A173426 = concatenation(1,2,...,n,n-1,...,1).
%C A260597 Or, distinct elements of A260589 in the order they occur for the first time.
%H A260597 M. F. Hasler and Chai Wah Wu, <a href="/A260597/b260597.txt">Table of n, a(n) for n = 1..114</a> (a(n) for n = 1..84 from M. F. Hasler)
%e A260597 A173426(1) = 1;  A173426(2) = 121 = 11^2 => a(1) = 11.
%e A260597 A173426(3) = 12321 = 3^2 37^2 => a(2..3) = (3, 37).
%e A260597 A173426(4) = 1234321 = 11^2 101^2 => a(4) = 101.
%e A260597 A173426(5) = 123454321 = 41^2 271^2 => a(5..6) = (41, 271).
%e A260597 A173426(6) = 12345654321 = 3^2 7^2 11^2 13^2 37^2 => a(7..8) = (7, 13).
%o A260597 (PARI) S=[];apply(t->S=setunion(S,t=setminus(Set(t),S));t, vector(30,n,A260589_row(n)))
%o A260597 (Python)
%o A260597 from sympy import primefactors
%o A260597 A260597_list = []
%o A260597 for n in range(1,10):
%o A260597     m = primefactors(int(''.join([str(d) for d in range(1,n+1)]+[str(d) for d in range(n-1,0,-1)])))
%o A260597     for p in m:
%o A260597         if not p in A260597_list:
%o A260597             A260597_list.append(p) # _Chai Wah Wu_, Aug 11 2015
%K A260597 nonn
%O A260597 1,1
%A A260597 _M. F. Hasler_, Jul 29 2015