This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260611 #10 Aug 05 2015 16:31:03 %S A260611 1,2,3,6,1,8,13,1,1,17,1,6,9,1,46,30,58,50,1,1,27,78,82,34,22,10,102, %T A260611 106,76,15,126,1,37,138,105,1,28,1,1,93,1,19,190,81,14,198,210,1,1, %U A260611 107,144,1,64,250,16,262,82,1,60,53,282,155,306,1,288,203,330,189,1,136,42,1,366 %N A260611 a(n) = superfactorial(prime(n)-1) mod prime(n). %H A260611 Matthew Campbell and Charles R Greathouse IV, <a href="/A260611/b260611.txt">Table of n, a(n) for n = 1..10000</a> (first 724 terms from Campbell) %F A260611 a(n) = A000178(A000040(n)-1) mod A000040(n). %e A260611 a(2) = superfactorial(2) mod 3 = (2!*1!) mod 3 = 2 mod 3 = 2. %p A260611 a:= proc(n) option remember; local i, p, r, v; %p A260611 p, r, v:= ithprime(n), 1$2; %p A260611 for i from 2 to p-1 do %p A260611 v:= v*i mod p; r:= r*v mod p %p A260611 od; r %p A260611 end: %p A260611 seq(a(n), n=1..100); # _Alois P. Heinz_, Aug 05 2015 %t A260611 Table[Mod[Superfactorial[Prime[n] - 1], Prime[n]], {n, 1, 175}] %o A260611 (PARI) a(n,p=prime(n))=my(t=Mod(1,p)); lift(prod(k=2,p-1,t*=k)) \\ _Charles R Greathouse IV_, Aug 05 2015 %Y A260611 The same for hyperfactorials: A260178. %Y A260611 Cf. A000178, A000040. %K A260611 nonn %O A260611 1,2 %A A260611 _Matthew Campbell_, Aug 05 2015