A260621 Let b(k, n) = number obtained when the map x->A002808(x) is applied k times to n; a(n) is the smallest k such that b(k, n) + 1 is prime.
1, 1, 12, 2, 1, 1, 3, 11, 1, 1, 7, 9, 1, 2, 10, 4, 2, 1, 1, 6, 8, 3, 3, 1, 9, 3, 1, 1, 18, 3, 1, 5, 7, 2, 2, 1, 4, 8, 2, 14, 1, 1, 6, 17, 2, 6, 1, 4, 6, 1, 1, 2, 2, 3, 7, 1, 13, 6, 1, 4, 16, 5, 16, 1, 5, 31, 35, 3, 5, 2, 1, 2, 3, 1, 1, 2, 6, 1, 1, 12, 5, 1, 2
Offset: 1
Keywords
Examples
When n = 3, writing Composite(x) for A002808(x): 1. Composite(3) = 8. 8 + 1 = 9 = 3^2. 9 is not prime. 2. Composite(8) = 15. 15 + 1 = 16 = 2^4. 16 is not prime. 3. Composite(15) = 25. 25 + 1 = 26 = 2*13. 26 is not prime. 4. Composite(25) = 38. 38 + 1 = 39 = 3*13. 39 is not prime. 5. Composite(38) = 55. 55 + 1 = 56 = 2^3*7. 56 is not prime. 6. Composite(55) = 77. 77 + 1 = 78 = 2*3*13. 78 is not prime. 7. Composite(77) = 105. 105 + 1 = 106 = 2*53. 106 is not prime. 8. Composite(105) = 140. 140 + 1 = 141 = 3*47. 141 is not prime. 9. Composite(140) = 183. 183 + 1 = 184 = 2^3*23. 184 is not prime. 10. Composite(183) = 235. 235 + 1 = 236 = 2^2*59. 236 is not prime. 11. Composite(235) = 298. 298 + 1 = 299 = 13*23. 299 is not prime. 12. Composite(298) = 372. 372 + 1 = 373. 373 is prime. -------------------------------------------------------------- Since the composite function was applied 12 times, a(3)=12.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
c = Select[Range[10^5], CompositeQ]; Table[k = 1; While[! PrimeQ[Nest[c[[#]] &, n, k] + 1], k++]; k, {n, 120}] (* Michael De Vlieger, Jul 15 2016 *)
Extensions
Terms from a(12) onward from Jon E. Schoenfield, Sep 27 2015
Comments