This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260625 #24 Apr 30 2016 16:22:16 %S A260625 1,2,1,1,4,4,1,2,4,5,3,1,4,7,2,1,7,6,5,6,6,5,4,4,6,11,4,3,10,7,2,2,7, %T A260625 7,8,4,4,10,1,5,13,7,3,5,10,6,1,1,8,13,7,5,10,13,5,7,7,6,9,3,10,13,3, %U A260625 1,15,13,5,10,12,8,3,6,8,16,8,8,14,8,2,6 %N A260625 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (x+3*y+13*z)*x*y*z a square, where x is a positive integer, and y,z,w are nonnegative integers with y >= z. %C A260625 Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 7, 39, 47, 95, 191, 239, 327, 439, 871, 1167, 1199, 1367, 1487, 1727, 1751, 2063, 2351, 2471, 4647, 4^k*m (k = 0,1,2,... and m = 1, 3). %C A260625 (ii) Any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that (a*x+b*y+c*z)*x*y*z is a square, whenever (a,b,c) is among the triples (1,3,7), (1,5,7), (1,5,11), (1,13,23), (2,4,6), (2,4,8), (2,6,8), (2,8,26), (3,5,21), (3,7,15), (3,9,43), (3,9,69), (3,9,141), (3,21,27), (3,27,39), (3,33,45), (3,39,123), (6,8,12), (6,8,18), (6,8,22), (6,8,28), (6,12,48), (6,18,132), (6,24,34), (6,24,36), (6,42,72), (7,13,29), (7,19,23), (12,18,24), (12,18,30), (12,26,48), (13,15,21), (13,17,19), (13,33,39), (14,28,58), (15,45,51), (16,22,62), (18,22,24), (21,27,33), (21,27,57), (23,37,61), (24,54,66), (33,57,79), (38,48,66), (42,58,84), (46,92,118). %C A260625 For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723. %H A260625 Zhi-Wei Sun, <a href="/A260625/b260625.txt">Table of n, a(n) for n = 1..10000</a> %H A260625 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016. %H A260625 Zhi-Wei Sun, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;852b9c4a.1604">Refine Lagrange's four-square theorem</a>, a message to Number Theory List, April 26, 2016. %e A260625 a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 1^2 with 1 > 0 and (1+3*1+13*0)*1*1*0 =0^2. %e A260625 a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2 > 0, 0 = 0 and (2+3*0+13*0)*2*0*0 = 0^2. %e A260625 a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2 > 0, 1 = 1 and %e A260625 (2+3*1+13*1)*2*1*1 = 6^2. %e A260625 a(39) = 1 since 39 = 2^2 + 3^2 + 1^2 + 5^2 with 2 > 0, 3 > 1 and (2+3*3+13*1)*2*3*1 = 12^2. %e A260625 a(47) = 1 since 47 = 2^2 + 3^2 + 3^2 + 5^2 with 2 > 0, 3 = 3 and (2+3*3+13*3)*2*3*3 = 30^2. %e A260625 a(95) = 1 since 95 = 2^2 + 3^2 + 1^2 + 9^2 with 2 > 0, 3 > 1 and (2+3*3+13*1)*2*3*1 = 12^2. %e A260625 a(191) = 1 since 191 = 2^2 + 3^2 + 3^2 + 13^2 with 2 > 0, 3 = 3 and (2+3*3+13*3)*2*3*3 = 30^2. %e A260625 a(239) = 1 since 239 = 2^2 + 3^2 + 1^2 + 15^2 with 2 > 0, 3 > 1 and (2+3*3+13*1)*2*3*1 = 12^2. %e A260625 a(327) = 1 since 327 = 11^2 + 3^2 + 1^2 + 14^2 with 11 > 0, 3 > 1 and (11+3*3+13*1)*11*3*1 = 33^2. %e A260625 a(439) = 1 since 439 = 10^2 + 5^2 + 5^2 + 17^2 with 10 > 0, 5 = 5 and (10+3*5+13*5)*10*5*5 = 150^2. %e A260625 a(871) = 1 since 871 = 21^2 + 15^2 + 3^2 + 14^2 with 21 > 0, 15 > 3 and (21+3*15+13*3)*21*15*3 = 315^2. %e A260625 a(1167) = 1 since 1167 = 22^2 + 11^2 + 11^2 + 21^2 with 22 > 0, 11 = 11 and (22+3*11+13*11)*22*11*11 = 726^2. %e A260625 a(1199) = 1 since 1199 = 14^2 + 21^2 + 21^2 + 11^2 with 14 > 0, 21 = 21 and (14+3*21+13*21)*14*21*21 = 1470^2. %e A260625 a(1367) = 1 since 1367 = 14^2 + 21^2 + 21^2 + 17^2 with 14 > 0, 21 = 21 and (14+3*21+13*21)*14*21*21 = 1470^2. %e A260625 a(1487) = 1 since 1487 = 9^2 + 29^2 + 6^2 + 23^2 with 9 > 0, 29 > 6 and (9+3*29+13*6)*9*29*6 = 522^2. %e A260625 a(1727) = 1 since 1727 = 2^2 + 21^2 + 21^2 + 29^2 with 2 > 0, 21 = 21 and (2+3*21+13*21)*2*21*21 = 546^2. %e A260625 a(1751) = 1 since 1751 = 9^2 + 17^2 + 15^2 + 34^2 with 9 > 0, 17 > 15 and (9+3*17+13*15)*9*17*15 = 765^2. %e A260625 a(2063) = 1 since 2063 = 18^2 + 19^2 + 3^2 + 37^2 with 18 > 0, 19 > 3 and (18+3*19+13*3)*18*19*3 = 342^2. %e A260625 a(2351) = 1 since 2351 = 15^2 + 35^2 + 15^2 + 26^2 with 15 > 0, 35 > 15 and (15+3*35+13*15)*15*35*15 = 1575^2. %e A260625 a(2471) = 1 since 2471 = 1^2 + 18^2 + 11^2 + 45^2 with 1 > 0, 18 > 11 and (1+3*18+13*11)*1*18*11 = 198^2. %e A260625 a(4647) = 1 since 4647 = 10^2 + 45^2 + 29^2 + 41^2 with 10 > 0, 45 > 29 and (10+3*45+13*29)*10*45*29 = 2610^2. %t A260625 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] %t A260625 Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(x+3y+13z)x*y*z], r=r+1],{x,1,Sqrt[n]},{z,0,Sqrt[(n-x^2)/2]},{y,z,Sqrt[n-x^2-z^2]}];Print[n," ",r];Label[aa];Continue,{n,1,80}] %Y A260625 Cf. A000118, A000290, A262357, A268507, A269400, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351. %K A260625 nonn %O A260625 1,2 %A A260625 _Zhi-Wei Sun_, Apr 30 2016