cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260630 Numerators of first derivatives of Catalan numbers (as continuous functions of n).

This page as a plain text file.
%I A260630 #18 Apr 09 2017 03:40:17
%S A260630 -1,1,5,59,449,1417,16127,429697,437705,7549093,145103527,146489197,
%T A260630 3396112211,2442184933,7369048679,429556076057,13374954901367,
%U A260630 13427048535167,94315062045929,3500487562166393,3510273150915593,144285489968702713,6218562602767668259
%N A260630 Numerators of first derivatives of Catalan numbers (as continuous functions of n).
%C A260630 Let C(n) = 4^n*Gamma(n+1/2)/(sqrt(Pi)*Gamma(n+2)), then C'(n) = C(n)*(H(n-1/2) - H(n+1) + log(4)), where H(n) = Sum_{k>=1} (1/k-1/(n+k)) are harmonic numbers.
%H A260630 G. C. Greubel, <a href="/A260630/b260630.txt">Table of n, a(n) for n = 0..1000</a>
%F A260630 a(n) = numerator(d(n)), where d(n) satisfies recurrence: d(0) = -1, d(1) = 1/2, (n+1)^2*d(n) = 2*(4*n^2-2*n-1)*d(n-1) - 4*(2*n-3)^2*d(n-2).
%e A260630 For n = 3, C'(3) = 59/12, so a(3) = numerator(59/12) = 59.
%t A260630 Numerator@FunctionExpand@Table[CatalanNumber'[n] , {n, 0, 22}]
%Y A260630 Cf. A260631 (denominators).
%Y A260630 Cf. A000108, A001008, A074599.
%K A260630 sign,frac
%O A260630 0,3
%A A260630 _Vladimir Reshetnikov_, Nov 11 2015