cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260631 Denominators of first derivatives of Catalan numbers (as continuous functions of n).

This page as a plain text file.
%I A260631 #15 Apr 09 2017 03:40:03
%S A260631 1,2,3,12,30,30,105,840,252,1260,6930,1980,12870,2574,2145,34320,
%T A260631 291720,79560,151164,1511640,406980,4476780,51482970,13728792,
%U A260631 171609900,318704100,84362850,1181079900,311375610,81940950,1270084725,40642711200,10644519600
%N A260631 Denominators of first derivatives of Catalan numbers (as continuous functions of n).
%C A260631 Let C(n) = 4^n*Gamma(n+1/2)/(sqrt(Pi)*Gamma(n+2)), then C'(n) = C(n)*(H(n-1/2) - H(n+1) + log(4)), where H(n) = Sum_{k>=1} (1/k-1/(n+k)) are harmonic numbers.
%H A260631 G. C. Greubel, <a href="/A260631/b260631.txt">Table of n, a(n) for n = 0..1000</a>
%F A260631 a(n) = denominator(d(n)), where d(n) satisfies recurrence: d(0) = -1, d(1) = 1/2, (n+1)^2*d(n) = 2*(4*n^2-2*n-1)*d(n-1) - 4*(2*n-3)^2*d(n-2).
%e A260631 For n = 3, C'(3) = 59/12, so a(3) = denominator(59/12) = 12.
%t A260631 Denominator@FunctionExpand@Table[CatalanNumber'[n] , {n, 0, 32}]
%Y A260631 Cf. A260630 (numerators), A000108.
%K A260631 nonn,frac
%O A260631 0,2
%A A260631 _Vladimir Reshetnikov_, Nov 11 2015