This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260640 #20 Sep 08 2022 08:46:13 %S A260640 1,3,6,12,21,35,44,55,60,70,78,88,90,99,102,110,117,119,120,133,156, %T A260640 171,176,180,184,204,207,220,225,230,231,234,238,240,247,252,255,285, %U A260640 286,300,312,341,342,348,360,368,372,391,403,408,414,425,434,460,462,465,468,481,483,494,495,504,506,510,550,555,561,572,574,585,600 %N A260640 Numbers n such that binomial(3*n,n) == 0 (mod n). %C A260640 See A014847 for the analog for 2n. %H A260640 Chai Wah Wu, <a href="/A260640/b260640.txt">Table of n, a(n) for n = 1..10000</a> %H A260640 M. Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP Scripts for Miscellaneous Math Problems</a>, sect. III: Binomial coefficients modulo integers, binomod.gp (v.1.4, 11/2015). %t A260640 Select[Range@ 600, Mod[Binomial[3 #, #], #] == 0 &] (* _Michael De Vlieger_, Nov 12 2015 *) %o A260640 (PARI) for(n=1,999,binomod(3*n,n,n)==0&&print1(n",")) \\ Using binomod.gp by M. Alekseyev, cf. links. %o A260640 (Python) %o A260640 from __future__ import division %o A260640 A260640_list, b = [], 3 %o A260640 for n in range(1,10**3): %o A260640 if not b % n: %o A260640 A260640_list.append(n) %o A260640 b = b*3*(3*n+2)*(3*n+1)//((2*n+2)*(2*n+1)) # _Chai Wah Wu_, Jan 27 2016 %o A260640 (Magma) [n: n in [1..600] |Binomial(3*n,n) mod n eq 0]; // _Vincenzo Librandi_, Jan 29 2016 %Y A260640 Cf. A260636, A080469, A109641, A109642, A014847. %K A260640 nonn %O A260640 1,2 %A A260640 _M. F. Hasler_, Nov 11 2015