This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260645 #24 Nov 10 2021 07:31:32 %S A260645 1,1,5,19,19,5,41,385,231,19,109,95,155,41,95,41387,271,231,341,361, %T A260645 205,109,505,1925,3337,155,36118,779,811,95,929,19823665,545,271,779, %U A260645 4389,1331,341,775,7315,1639,205,1805,2071,4389,505,2161,206935,18099,3337,1355,2945,2755,36118,2071,15785,1705,811,3421,1805,3659,929,9471 %N A260645 The number of central quasigroups (also known as T-quasigroups, or quasigroups affine over an abelian group) of order n, up to isomorphism. %C A260645 A quasigroup (G,*) is called central if it admits an affine representation over an abelian group (G,+), that is, if x*y = f(x)+g(y)+c where f,g are automorphisms of (G,+) and c in G. %H A260645 David Stanovsky, <a href="/A260645/b260645.txt">Table of n, a(n) for n = 1..63</a> %H A260645 David Stanovský and Petr Vojtechovský, <a href="http://arxiv.org/abs/1511.03534">Central and medial quasigroups of small order</a>, arxiv preprint arXiv:1511.03534 [math.GR], 2015. %o A260645 (GAP) # gives the number of central quasigroups over SmallGroup(n, k) %o A260645 LoadPackage("loops"); %o A260645 CQ := function( n, k ) %o A260645 local G, ct, elms, inv, A, f_reps, count,f, Cf, O, g_reps, g, Cfg, W, unused, c, Wc; %o A260645 G := SmallGroup( n, k ); %o A260645 G := IntoLoop( G ); %o A260645 ct := CayleyTable( G ); %o A260645 elms := Elements( G ); %o A260645 inv := List( List( [1..n], i -> elms[i]^(-1) ), x -> x![1] ); %o A260645 A := AutomorphismGroup( G ); %o A260645 f_reps := List( ConjugacyClasses( A ), Representative ); %o A260645 count := 0; %o A260645 for f in f_reps do %o A260645 Cf := Centralizer( A, f ); %o A260645 O := OrbitsDomain( Cf, A ); %o A260645 g_reps := List( O, x -> x[1] ); %o A260645 for g in g_reps do %o A260645 Cfg := Intersection( Cf, Centralizer( A, g ) ); %o A260645 W := Set( [1..n], w -> ct[w][ inv[ ct[w^f][w^g] ] ] ); %o A260645 unused := [1..n]; %o A260645 while not IsEmpty( unused ) do %o A260645 c := unused[1]; %o A260645 count := count + 1; %o A260645 if Size(W) = Length(unused) then %o A260645 unused := []; %o A260645 else %o A260645 Wc := Set( W, w -> ct[w][c] ); %o A260645 Wc := Union( Orbits( Cfg, Wc ) ); %o A260645 unused := Difference( unused, Wc ); %o A260645 fi; %o A260645 od; %o A260645 od; %o A260645 od; %o A260645 return count; %o A260645 end; %Y A260645 Cf. A226193. %K A260645 nonn,hard,mult %O A260645 1,3 %A A260645 _David Stanovsky_, Nov 12 2015