A260648 Number of distinct prime divisors p of the n-th composite number c such that gpf(c - p) = p, where gpf = greatest prime factor (A006530).
1, 2, 0, 1, 2, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 0, 1, 3
Offset: 1
Keywords
Examples
a(8) = 2 since the distinct prime divisors of A002808(8) = 15 are 3 and 5, A006530(15 - 3) = 3 and A006530(15 - 5) = 5, so all prime 3 and 5 are to be considered.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to consider composites <= N f:= proc(c) local p, t; if isprime(c) then return NULL fi; nops(select(p -> max(numtheory:-factorset(c/p-1))<=p, numtheory:-factorset(c))) end proc: map(f, [$4..N]); # Robert Israel, May 02 2017
Extensions
a(87) corrected by Robert Israel, May 02 2017
Comments