cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260651 Number of factorions in base n.

Original entry on oeis.org

2, 2, 3, 3, 4, 2, 2, 3, 4, 5, 2, 3, 3, 4, 3, 5, 2, 2, 2, 3, 2, 3, 4, 2, 4, 4, 3, 2, 3, 2, 4, 2, 6, 3, 3, 3, 3, 2
Offset: 2

Views

Author

Eric M. Schmidt (based on data from A193163), Nov 16 2015

Keywords

Comments

1 and 2 are factorions of every integer number base, since 1 = 1! and 2 = 2!. Thus every integer number base has at least 2 factorions. - Michael De Vlieger, Nov 23 2015
A factorion is an integer which is equal to the sum of factorials of its digits. See A193163 for the list of all factorions in base n. - M. F. Hasler, Nov 25 2015

Examples

			a(6) = 4 because base 6 has the factorions {1, 2, 25, 26}. Expressed in base 6 these are {1, 2, 41, 42}. 1! = 1 and 2! = 2 and are factorions in every integer base b >= 2. Additionally, 4! + 1! = 24 + 1 = 25 and 4! + 2! = 24 + 2 = 26. - _Michael De Vlieger_, Nov 23 2015
a(2) = 2 = #{ 1, 2 }, indeed 1 = 1! and 2 = 10[2] = 1! + 0! and there cannot be any other since the sum of factorials of the binary digits equals the number of these digits, and from 3 on all numbers are larger than the number of their binary digits. - _M. F. Hasler_, Nov 25 2015
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Select[Range[n Factorial[n - 1]], Total@ Map[Factorial, #] &@ IntegerDigits[#, n] == # &], {n, 2, 10}] (* Michael De Vlieger, Nov 23 2015 *)