This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260669 #12 Feb 07 2024 11:58:01 %S A260669 1,0,1,2,6,8,24,30,74,110,219,309,651,870,1608,2394,4085,5756,9931, %T A260669 13785,22724,32300,50404,70862,111540,153756,232868,326259,484090, %U A260669 667015,986082,1345566,1951216,2673588,3805742,5179213,7348514,9895254,13845750,18681896 %N A260669 Number of unordered pairs of partitions of n with no common parts. %H A260669 Reinhard Zumkeller, <a href="/A260669/b260669.txt">Table of n, a(n) for n = 0..5000</a> %F A260669 a(n) = A054440(n) / 2 for n >= 1. %e A260669 n = 6 has A000041(6) = 11 partitions: [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1]; the following table shows the number of common parts of the pairs of these partitions, e.g. row i, col f: number of common parts of [2,2,1,1] and [3,2,1] = 2: %e A260669 . -------------------+---+---+---+---+---+---+---+---+---+---+---+ %e A260669 . | a | b | c | d | e | f | g | h | i | j | k | %e A260669 . ---+---------------+---+---+---+---+---+---+---+---+---+---+---+ %e A260669 . a | [6] | 1 | %e A260669 . b | [5,1] | 0 2 | %e A260669 . c | [4,2] | 0 0 2 | %e A260669 . d | [4,1,1] | 0 1 1 3 | %e A260669 . e | [3,3] | 0 0 0 0 2 | %e A260669 . f | [3,2,1] | 0 1 1 1 1 3 | %e A260669 . g | [3,1,1,1] | 0 1 0 2 1 2 4 | %e A260669 . h | [2,2,2] | 0 0 1 0 0 1 0 3 | %e A260669 . i | [2,2,1,1] | 0 1 1 2 0 2 2 2 4 | %e A260669 . j | [2,1,1,1,1] | 0 1 1 2 0 2 3 1 3 5 | %e A260669 . k | [1,1,1,1,1,1] | 0 1 0 2 0 1 3 0 2 4 6 | %e A260669 . ---+---------------+---+---+---+---+---+---+---+---+---+---+---+ %e A260669 The table contains 24 zeros, therefore a(6) = 24. %o A260669 (Haskell) %o A260669 a260669 = flip div 2 . a054440 %Y A260669 Cf. A000041, A054440. %K A260669 nonn %O A260669 0,4 %A A260669 _Reinhard Zumkeller_, Nov 15 2015 %E A260669 a(0)=1 prepended by _Alois P. Heinz_, Feb 07 2024