This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260689 #8 Nov 17 2015 19:02:14 %S A260689 1,1,3,5,3,7,1,5,7,3,9,3,13,1,5,11,13,3,9,17,9,15,19,5,7,13,17,19,3, %T A260689 15,21,9,15,25,1,7,11,13,17,23,9,15,21,27,29,3,27,5,7,17,23,25,31,9, %U A260689 15,21,33,35,3,21,27,33,1,5,11,19,25,29,31,37,3,15,27 %N A260689 Table read by rows: numbers m such that (2*n-m, 2*n+m) is a prime pair. %C A260689 1 <= T(n,k) <= 2*n-3; T(n,2) > 3 for n > 3; all terms are odd; %C A260689 A264526(n) = T(n,1); %C A260689 A264527(n) = T(n,A069360(n)); %C A260689 T(A040040(n),1) = 1; %C A260689 T(A088763(n),1) = 3. %H A260689 Reinhard Zumkeller, <a href="/A260689/b260689.txt">Rows n = 2..1000 of triangle, flattened</a> %H A260689 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %e A260689 . n | T(n,k) | (2*n-T(n,k), 2*n+T(n,k)) k=1..A069360(n) %e A260689 . ----+-----------------+----------------------------------------------- %e A260689 . 2 | 1 | (3,5) %e A260689 . 3 | 1 | (5,7) %e A260689 . 4 | 3,5 | (5,11) (3,13) %e A260689 . 5 | 3,7 | (7,13) (3,17) %e A260689 . 6 | 1,5,7 | (11,13) (7,17) (5,19) %e A260689 . 7 | 3,9 | (11,17) (5,23) %e A260689 . 8 | 3,13 | (13,19) (3,29) %e A260689 . 9 | 1,5,11,13 | (17,19) (13,23) (7,29) (5,31) %e A260689 . 10 | 3,9,17 | (17,23) (11,29) (3,37) %e A260689 . 11 | 9,15,19 | (13,31) (7,37) (3,41) %e A260689 . 12 | 5,7,13,17,19 | (19,29) (17,31) (11,37) (7,41) (5,43) %e A260689 . 13 | 3,15,21 | (23,29) (11,41) (5,47) %e A260689 . 14 | 9,15,25 | (19,37) (13,43) (3,53) %e A260689 . 15 | 1,7,11,13,17,23 | (29,31) (23,37) (19,41) (17,43) (13,47) (7,53) %e A260689 . 16 | 9,15,21,27,29 | (23,41) (17,47) (11,53) (5,59) (3,61) %e A260689 . 17 | 3,27 | (31,37) (7,61) %e A260689 . 18 | 5,7,17,23,25,31 | (31,41) (29,43) (19,53) (13,59) (11,61) (5,67) %e A260689 . 19 | 9,15,21,33,35 | (29,47) (23,53) (17,59) (5,71) (3,73) %e A260689 . 20 | 3,21,27,33 | (37,43) (19,61) (13,67) (7,73) . %o A260689 (Haskell) %o A260689 a260689 n k = a260689_tabf !! (n-2) !! (k-1) %o A260689 a260689_row n = [m | m <- [1, 3 .. 2 * n - 3], %o A260689 a010051' (2*n + m) == 1, a010051' (2*n - m) == 1] %o A260689 a260689_tabf = map a260689_row [2..] %Y A260689 Cf. A069360 (row lengths), A010051, A264526, A264527. %K A260689 nonn,tabf %O A260689 2,3 %A A260689 _Reinhard Zumkeller_, Nov 17 2015