This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260705 #23 Jan 07 2016 14:36:15 %S A260705 84,168,336,1008,3024,5544,11088,16632,33264,49896,99792,182952, %T A260705 365904,249480,498960,1097712,2162160,3359664,1846152,3027024,5538456, %U A260705 6054048,9081072,9230760,14270256,19891872,20307672,25197480,33297264,45405360,55135080,71351280 %N A260705 Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other. %C A260705 It seems that a(n)==0 (mod 84). %C A260705 Additional terms with n > 75: a(77) = 15455984544, a(80) = 27719972280, a(83) = 22439977560, a(84) = 18479981520, a(86) = 28559971440. - _Lars Blomberg_, Jan 04 2016 %H A260705 Lars Blomberg, <a href="/A260705/b260705.txt">Table of n, a(n) for n = 1..75</a>. %e A260705 a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48). %p A260705 with(numtheory):nn:=10^8: %p A260705 for n from 1 to 16 do: %p A260705 ii:=0: %p A260705 for m from 1 to nn while(ii=0) do: %p A260705 it:=0:d:=divisors(m):d0:=nops(d): %p A260705 for i from 1 to d0 do: %p A260705 dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd): %p A260705 s:=sum('y[j]*10^(n1-j)', 'j'=1..n1): %p A260705 for k from i+1 to d0 do: %p A260705 if s=d[k] %p A260705 then %p A260705 it:=it+1: %p A260705 else fi: %p A260705 od: %p A260705 od: %p A260705 if it=n %p A260705 then %p A260705 ii:=1:printf("%d %d \n",n,m): %p A260705 else fi: %p A260705 od: %p A260705 od: %o A260705 (PARI) nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd,rda) && (da == rrda), nb++);); nb/2;} %o A260705 a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k;} \\ _Michel Marcus_, Dec 27 2015 %Y A260705 Cf. A000005, A027750, A083815, A206703, A260704. %K A260705 nonn,base %O A260705 1,1 %A A260705 _Michel Lagneau_, Nov 17 2015 %E A260705 a(14)-a(15) corrected by _Lars Blomberg_, Dec 27 2015 %E A260705 a(7), a(19), a(20) corrected and a(21)-a(32) added by _Lars Blomberg_, Jan 04 2016