A260709 Smallest nonsquare congruent to a square (mod k^2) for all k = 1..n.
2, 5, 13, 52, 241, 241, 436, 1009, 1009, 1009, 2641, 2641, 8089, 8089, 8089, 8089, 18001, 18001, 53881, 53881, 53881, 53881, 87481, 87481, 87481, 87481, 87481, 87481, 117049, 117049, 515761, 515761, 515761, 515761, 515761, 515761, 1083289, 1083289, 1083289, 1083289
Offset: 1
Keywords
Links
- Robert Israel and Emmanuel Vantieghem, Table of n, a(n) for n = 1..81[Terms 1 through 70 were computed by R. Israel: terms 71 through 82 by E. Vantieghem. Nov 23 2015]
- R. Israel in reply to Don Reble, A081650, SeqFan list, Nov. 17, 2015
Crossrefs
Cf. A081650.
Programs
-
MATLAB
N = 2*10^8; % to get all terms <= N B = ones(1,N); B([1:floor(sqrt(N))].^2) = 0; m = 1; while true nsq = ones(m^2,1); sqs = unique(mod([1:m^2/2].^2, m^2)); sqs = [sqs(sqs > 0), m^2]; nsq(sqs) = 0; S = nsq * ones(1,ceil(N/m^2)); S = reshape(S,1,numel(S)); B(S(1:N)>0) = 0; v = find(B,1,'first'); if numel(v) == 0 break end A(m) = v; m = m + 1; end A % Robert Israel, Nov 17 2015
-
Mathematica
(* to get the sequence up to B *) VQR=Table[Union[Mod[Range[(n^2)/2]^2,n^2]],{n,2,17}]; Print[2];k=1;m=2;While[kEmmanuel Vantieghem, Nov 23 2013 *)
-
PARI
t=2;for(n=1,90, for(m=t,9e9,issquare(m)&&next; for(k=1,n,issquare(Mod(m,k^2))||next(2)); print1(t=m,",");break))
Comments