This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260728 #31 Jun 28 2022 15:28:47 %S A260728 0,0,0,1,0,0,1,1,0,2,0,1,1,0,1,1,0,0,2,1,0,1,1,1,1,0,0,3,1,0,1,1,0,1, %T A260728 0,1,2,0,1,1,0,0,1,1,1,2,1,1,1,2,0,1,0,0,3,1,1,1,0,1,1,0,1,3,0,0,1,1, %U A260728 0,1,1,1,2,0,0,1,1,1,1,1,0,4,0,1,1,0,1,1,1,0,2,1,1,1,1,1,1,0,2,3,0,0,1,1,0,1,0,1,3,0,1,1,1,0,1,1,0,2,1,1,1 %N A260728 Bitwise-OR of the exponents of all 4k+3 primes in the prime factorization of n. %C A260728 A001481 (numbers that are the sum of 2 squares) gives the positions of even terms in this sequence, while its complement A022544 (numbers that are not the sum of 2 squares) gives the positions of odd terms. %C A260728 If instead of bitwise-oring (A003986) we added in ordinary way the exponents of 4k+3 primes together, we would get the sequence A065339. For the positions where these two sequences differ see A260730. %H A260728 Antti Karttunen, <a href="/A260728/b260728.txt">Table of n, a(n) for n = 0..10000</a> %F A260728 If n < 3, a(n) = 0; thereafter, for any even n: a(n) = a(n/2), for any n with its smallest prime factor (A020639) of the form 4k+1: a(n) = a(A032742(n)), otherwise [when A020639(n) is of the form 4k+3] a(n) = A003986(A067029(n),a(A028234(n))). %F A260728 Other identities. For all n >= 0: %F A260728 A229062(n) = 1 - A000035(a(n)). [Reduced modulo 2 and complemented, the sequence gives the characteristic function of A001481.] %F A260728 a(n) = a(A097706(n)). [The result depends only on the prime factors of the form 4k+3.] %F A260728 a(n) = A267116(A097706(n)). %F A260728 a(n) = A267113(A267099(n)). %e A260728 For n = 21 = 3^1 * 7^1 we compute A003986(1,1) = 1, thus a(21) = 1. %e A260728 For n = 63 = 3^2 * 7^1 we compute A003986(2,1) = A003986(1,2) = 3, thus a(63) = 3. %t A260728 Table[BitOr @@ (Map[Last, FactorInteger@ n /. {p_, _} /; MemberQ[{0, 1, 2}, Mod[p, 4]] -> Nothing]), {n, 0, 120}] (* _Michael De Vlieger_, Feb 07 2016 *) %o A260728 (Scheme) (define (A260728 n) (cond ((< n 3) 0) ((even? n) (A260728 (/ n 2))) ((= 1 (modulo (A020639 n) 4)) (A260728 (A032742 n))) (else (A003986bi (A067029 n) (A260728 (A028234 n)))))) ;; A003986bi implements bitwise-or (see A003986). %o A260728 (Python) %o A260728 from functools import reduce %o A260728 from operator import or_ %o A260728 from sympy import factorint %o A260728 def A260728(n): return reduce(or_,(e for p, e in factorint(n).items() if p & 3 == 3),0) # _Chai Wah Wu_, Jun 28 2022 %Y A260728 Cf. A000035, A001481, A022544, A003986, A020639, A028234, A032742, A067029, A097706, A229062, A260730. %Y A260728 Cf. also A267113, A267116, A267099. %Y A260728 Differs from A065339 for the first time at n=21, where a(21) = 1, while A065339(21)=2. %K A260728 nonn %O A260728 0,10 %A A260728 _Antti Karttunen_, Aug 12 2015