cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260738 Row index to A255127: a(1) = 0; for n > 1, a(n) = number of the stage where n is removed in the sieve which produces Ludic numbers.

This page as a plain text file.
%I A260738 #15 Aug 02 2015 17:54:48
%S A260738 0,1,2,1,3,1,4,1,2,1,5,1,6,1,2,1,7,1,3,1,2,1,8,1,9,1,2,1,10,1,4,1,2,1,
%T A260738 3,1,11,1,2,1,12,1,13,1,2,1,14,1,3,1,2,1,15,1,5,1,2,1,4,1,16,1,2,1,3,
%U A260738 1,17,1,2,1,18,1,6,1,2,1,19,1,3,1,2,1,20,1,4,1,2,1,21,1,22,1,2,1,3,1,23,1,2,1,7,1,5,1,2,1,24,1,3,1,2,1,4,1,25,1,2,1,26,1
%N A260738 Row index to A255127: a(1) = 0; for n > 1, a(n) = number of the stage where n is removed in the sieve which produces Ludic numbers.
%H A260738 Antti Karttunen, <a href="/A260738/b260738.txt">Table of n, a(n) for n = 1..10105</a>
%F A260738 Other identities. For all n >= 1:
%F A260738 a(A003309(n)) = n-1. [In Ludic sieve A003309(k+1) (i.e., the k-th Ludic number after 1) is the first among the numbers removed at stage k.]
%F A260738 a(2n) = 1. [All even numbers are removed at the stage one of the sieve.]
%F A260738 a(A016945(n)) = 2, a(A255413(n)) = 3, a(A255414(n)) = 4, ..., a(A255419(n)) = 9.
%F A260738 a(A254100(n)) = n.
%F A260738 For all n >= 2:
%F A260738 A255127(a(n), A260739(n)) = n.
%o A260738 (Scheme)
%o A260738 (define (A260738 n) (cond ((= 1 n) 0) ((even? n) 1) (else (let searchrow ((row 2)) (let searchcol ((col 1)) (cond ((>= (A255127bi row col) n) (if (= (A255127bi row col) n) row (searchrow (+ 1 row)))) (else (searchcol (+ 1 col))))))))) ;; Code for A255127bi given in A255127.
%Y A260738 Row index to array A255127.
%Y A260738 Cf. A003309, A254100.
%Y A260738 Cf. A260739 (corresponding column index).
%Y A260738 Cf. A055396, A260438 for row indices to other arrays similar to A255127.
%Y A260738 Differs from A055396 for the first time at n=19.
%K A260738 nonn
%O A260738 1,3
%A A260738 _Antti Karttunen_, Jul 30 2015