This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260745 #35 Jun 01 2024 06:18:27 %S A260745 1,3,11,36,127,405,1409,4561,15559,50294,169537,551001,1835073, %T A260745 5947516,19717181,63697526,209422033,676831026,2208923853,7112963260, %U A260745 23127536979,74225466424,239962004807,768695233371,2473092566267,7896286237030,25316008015581,80572339461372 %N A260745 Number of prime juggling patterns of period n using 3 balls. %C A260745 A juggling pattern is prime if the closed walk corresponding to the pattern in the juggling state graph is a cycle. %H A260745 Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce, <a href="http://arxiv.org/abs/1508.05296">Counting prime juggling patterns</a>, arXiv:1508.05296 [math.CO], 2015. %H A260745 Jack Boyce, <a href="https://github.com/jkboyce/jprime">jprime program</a>, 2024. %H A260745 Fan Chung and R. L. Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, American Mathematical Monthly 115 (2008), 185-194. %e A260745 In siteswap notation, the prime juggling pattern(s) of length one is 3; of length two are 42, 51 and 60; of length three are 441, 522, 531, 450, 612, 630, 360, 711, 720, 801 and 900. %Y A260745 Cf. A260744, A260746, A260752. %K A260745 nonn,more %O A260745 1,2 %A A260745 _Esther Banaian_, Jul 30 2015 %E A260745 a(14)-a(17) from _Roman Berens_, Mar 20 2021 %E A260745 a(18)-a(28) from _Jack Boyce_, May 31 2024