A260748 Dragon Curve triple point lower inverses. If D:[0,1] is a Dragon curve, then besides n, there are two larger integers p, q (with p < q) with D(A(n)/(15*2^k)) = D(A(p)/(15*2^k)) = D(A(q)/(15*2^k)), where k is any integer > log_2(A(q)/15).
13, 26, 37, 52, 73, 74, 97, 103, 104, 111, 133, 146, 148, 157, 193, 194, 199, 206, 207, 208, 209, 217, 221, 222, 223, 231, 253, 266, 277, 292, 296, 307, 313, 314, 317, 337, 373, 386, 388, 397, 398, 409, 412, 414, 416, 417, 418, 419, 431, 433, 434, 439, 442, 444, 446, 447, 449, 457, 461, 462, 463, 471, 493, 506, 517, 532, 553, 554, 577, 583, 584, 591, 592, 613, 614, 619, 626, 627, 628, 629, 631, 634, 637, 667, 673, 674, 677, 697, 733, 746, 757, 772, 776, 787, 793, 794, 797, 817, 853
Offset: 1
Examples
For definiteness, we choose the Dragon in the complex plane with Dragon(0) = 0, Dragon(1) = 1, Dragon(1/3) = 1/5+2i/5 Then using A(1) = 13, for k=0,1,2, {dragun[13/15], dragun[13/30], dragun[13/60]} -> {{2/3 - I/3}, {1/2 + I/6}, {1/6 + I/3}} These have inverse images undrag/@First/@% {{13/15}, {13/30, 7/10, 23/30}, {13/60, 7/20, 23/60}} k=0 is too small--7/5 and 23/15 are off the end of the curve! dragun[13/15/2^k] = dragun[21/15/2^k] = dragun[23/15/2^k], which empirically = (2/3 - I/3) (1/2 + I/2)^k
Links
- Brady Haran and Don Knuth, Wrong turn on the Dragon, Numberphile video (2014)
- Wikipedia, Dragon curve
Programs
-
Mathematica
(* by Julian Ziegler Hunts *) piecewiserecursivefractal[x_, f_, which_, iters_, fns_] := piecewiserecursivefractal[x, g_, which, iters, fns] = ((piecewiserecursivefractal[x, h_, which, iters, fns] := Block[{y}, y /. Solve[f[y] == h[y], y]]); Union @@ ((fns[[#]] /@ piecewiserecursivefractal[iters[[#]][x], Composition[f, fns[[#]]], which, iters, fns]) & /@ which[x])); dragun[t_] := piecewiserecursivefractal[t, Identity, Piecewise[{{{1}, 0 <= # <= 1/2}, {{2}, 1/2 <= # <= 1}}, {}] &, {2*# &, 2*(1 - #) &}, {(1 + I)*#/2 &, (I - 1)*#/2 + 1 &}] undrag[z_] := piecewiserecursivefractal[z, Identity, If[-(1/3) <= Re[#] <= 7/6 && -(1/3) <= Im[#] <= 2/3, {1, 2}, {}] &, {#*(1 - I) &, (1 - #)*(1 + I) &}, {#/2 &, 1 - #/2 &}] DeleteDuplicates[Reap[Do[If[Length[#] > 2, Sow[15*64*#[[1]]]] &@ undrag[dragun[k/15/64][[1]]], {k, 0, 288*3}]][[2, 1]]] (* or 128 or 256 or ...*)
Comments