This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260752 #35 Jun 01 2024 06:18:11 %S A260752 1,5,29,157,901,4822,27447,149393,836527,4610088,25846123,142296551, %T A260752 799268609,4426204933,24808065829,137945151360,773962487261, %U A260752 4310815784117,24208263855765 %N A260752 Number of prime juggling patterns of period n using 5 balls. %C A260752 A juggling pattern is prime if the closed walk corresponding to the pattern in the juggling state graph is a cycle. %H A260752 Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce, <a href="http://arxiv.org/abs/1508.05296">Counting prime juggling patterns</a>, arXiv:1508.05296 [math.CO], 2015. %H A260752 Jack Boyce, <a href="https://github.com/jkboyce/jprime">jprime program</a>, 2024. %H A260752 Fan Chung and R. L. Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, American Mathematical Monthly 115 (2008), 185-194. %e A260752 In siteswap notation, the prime juggling pattern(s) of length one is 5; of length two are 64, 73, 82, 91 and (10)0; of length three are (11)31, (11)22, 4(10)1, 3(12)0, (13)20, (13)11, 591, (10)23, (10)41, 960, 780, 663, 744, 753, 4(11)0, (12)12, (12)30, 771, 861, (15)00, 933, 942, 582, (10)50, 690, (14)01, 852, 834 and 672. %Y A260752 Cf. A260744, A260745, A260746. %K A260752 nonn,more %O A260752 1,2 %A A260752 _Jeffrey Davis_, Jul 30 2015 %E A260752 a(12)-a(13) from _Roman Berens_, Mar 20 2021 %E A260752 a(14)-a(19) from _Jack Boyce_, May 31 2024