cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260770 Certain directed lattice paths.

Original entry on oeis.org

1, 6, 35, 207, 1251, 7678, 47658, 298371, 1880659, 11918586, 75871710, 484793950, 3107494430, 19973075580, 128678167220, 830735862179, 5372968238979, 34807369089378, 225818672567382, 1466956891774602, 9540909022501226, 62119854068610436, 404854330511525580
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Formula

See Dziemianczuk (2014) Equation (29a) with m=1.
From Vaclav Kotesovec, Jul 15 2022: (Start)
Recurrence: (n-2)*n*(n+1)*(100*n^3 - 510*n^2 + 677*n - 111)*a(n) = -6*n*(40*n^3 - 5*n^2 - 586*n + 863)*a(n-1) + 4*(n-1)*(1100*n^5 - 6710*n^4 + 12387*n^3 - 3775*n^2 - 8723*n + 5448)*a(n-2) - 72*(n-2)*(n-1)*(10*n^2 - 5*n - 24)*a(n-3) + 16*(n-3)*(n-2)*(n-1)*(100*n^3 - 210*n^2 - 43*n + 156)*a(n-4).
a(n) ~ sqrt((4*phi^6 - 1)/5 + phi^(11/2)) * 2^(n-1) * phi^(5*n/2) / sqrt(Pi*n), where phi = A001622 is the golden ratio. (End)

Extensions

More terms from Lars Blomberg, Aug 01 2015