A260784 Coefficients in a certain low-temperature series expansion.
0, 24, 1440, 181440, 43545600, 17882726400, 11333177856000, 10257397742592000, 12540115964952576000, 19887027595237490688000, 39679473692005106319360000, 97249082487667949725286400000, 287164491478121796028858368000000, 1005464789964467723115455053824000000
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..196
- Grzegorz Siudem, Agata Fronczak, Bell polynomials in the series expansions of the Ising model, arXiv:2007.16132 [math-ph], 2020.
- G. Siudem, A. Fronczak, P. Fronczak, Exact low-temperature series expansion for the partition function of the two-dimensional zero-field s= 1/2 Ising model on the infinite square lattice, arXiv preprint arXiv:1410.7963, 2014. See equations (8) and (11).
Crossrefs
Cf. A002890.
Programs
-
Maple
A260784 := proc(n) local a,d1,d2,d3,d4,d33half ; a := 0 ; for d2 from 0 do if 2*d2 > n then break; end if; for d3 from 0 do if 2*d2 +3*d3 > n then break; end if; for d4 from 0 do if 2*d2 +3*d3+4*d4 > n then break; end if; d1 := n-2*d2-3*d3-4*d4 ; if d1 >= 0 and type(d1+d3,'even') then d13half := (d1+d3)/2 ; a := a+(d1+d2+d3+d4)!/d1!/d2!/d3!/d4!*(-1)^(d2+d3+d4-1)*2^d2 /(d1+d2+d3+d4)*binomial(d1+d3,d13half)^2 ; end if; end do: end do: end do: a*n!/2 ; end proc: seq(A260784(2*n),n=1..15) ; # R. J. Mathar, Aug 27 2015
-
Mathematica
"Listing 1" in Siudem et al. (2014) gives Mathematica code for the fractions a(n)/(2n)!.
Formula
a(n) ~ 2^(2*n) * (1 + sqrt(2))^(2*n) * n^(2*n - 5/2) / (sqrt(Pi) * exp(2*n)). - Vaclav Kotesovec, May 03 2024