cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260784 Coefficients in a certain low-temperature series expansion.

Original entry on oeis.org

0, 24, 1440, 181440, 43545600, 17882726400, 11333177856000, 10257397742592000, 12540115964952576000, 19887027595237490688000, 39679473692005106319360000, 97249082487667949725286400000, 287164491478121796028858368000000, 1005464789964467723115455053824000000
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2015

Keywords

Crossrefs

Cf. A002890.

Programs

  • Maple
    A260784 := proc(n)
        local a,d1,d2,d3,d4,d33half ;
        a := 0 ;
        for d2 from 0 do
            if 2*d2 > n then
                break;
            end if;
            for d3 from 0 do
                if 2*d2 +3*d3 > n then
                    break;
                end if;
                for d4 from 0 do
                    if 2*d2 +3*d3+4*d4 > n then
                        break;
                    end if;
                    d1 := n-2*d2-3*d3-4*d4 ;
                    if d1 >= 0 and type(d1+d3,'even') then
                        d13half := (d1+d3)/2 ;
                        a := a+(d1+d2+d3+d4)!/d1!/d2!/d3!/d4!*(-1)^(d2+d3+d4-1)*2^d2
                            /(d1+d2+d3+d4)*binomial(d1+d3,d13half)^2 ;
                    end if;
                end do:
            end do:
        end do:
        a*n!/2 ;
    end proc:
    seq(A260784(2*n),n=1..15) ; # R. J. Mathar, Aug 27 2015
  • Mathematica
    "Listing 1" in Siudem et al. (2014) gives Mathematica code for the fractions a(n)/(2n)!.

Formula

a(n) ~ 2^(2*n) * (1 + sqrt(2))^(2*n) * n^(2*n - 5/2) / (sqrt(Pi) * exp(2*n)). - Vaclav Kotesovec, May 03 2024