This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260786 #16 Apr 17 2023 11:18:12 %S A260786 2,2,2,4,10,32,122,544,2770,15872,101042,707584,5405530,44736512, %T A260786 398721962,3807514624,38783024290,419730685952,4809759350882, %U A260786 58177770225664,740742376475050,9902996106248192,138697748786275802,2030847773013704704,31029068327114173810,493842960380415967232 %N A260786 Twice the Euler or up/down numbers A000111. %H A260786 S. T. Thompson, <a href="/A260786/a260786.pdf">Problem E754: Skew Ordered Sequences</a>, Amer. Math. Monthly, 54 (1947), 416-417. [Annotated scanned copy] %F A260786 a(0)=a(1)=2; thereafter a(n) = (1/4)*Sum_{k=1..n} binomial(n-1, k-1)*a(k-1)*a(n-k). %p A260786 f:=proc(n) option remember; %p A260786 if n <= 1 then 2 else (1/4)*add(binomial(n-1,k-1)*f(k-1)*f(n-k),k=1..n); fi; %p A260786 end; %p A260786 [seq(f(n),n=0..30)]; %o A260786 (Python) %o A260786 from itertools import accumulate, islice %o A260786 def A260786_gen(): # generator of terms %o A260786 yield from (2,2) %o A260786 blist = (0,2) %o A260786 while True: %o A260786 yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1] %o A260786 A260786_list = list(islice(A260786_gen(),30)) # _Chai Wah Wu_, Apr 17 2023 %Y A260786 Cf. A000111. %Y A260786 Apart from initial terms, same as A001250. %K A260786 nonn %O A260786 0,1 %A A260786 _N. J. A. Sloane_, Aug 04 2015