cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260787 G.f.: Product_{k>=1} 1/(1-x^k)^Fibonacci(k+2).

Original entry on oeis.org

1, 2, 6, 15, 38, 89, 210, 474, 1065, 2339, 5091, 10919, 23230, 48887, 102126, 211599, 435561, 890617, 1810786, 3661118, 7365473, 14747049, 29397160, 58356179, 115392801, 227332038, 446304671, 873298579, 1703463864, 3312873935, 6424553973, 12425158365, 23968214357, 46120280910, 88535346223
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Comments

In general, the sequence with g.f. Product_{k>=1} 1/(1-x^k)^Fibonacci(k+z), where z is nonnegative integer, is asymptotic to phi^(n + z/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp((phi/10 - 1/2) * Fibonacci(z) - Fibonacci(z+1)/10 + 2 * 5^(-1/4) * phi^(z/2) * sqrt(n) + s), where s = Sum_{k>=2} (Fibonacci(z) + Fibonacci(z+1) * phi^k) / ((phi^(2*k) - phi^k - 1)*k) and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+2], {k, 1, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 05 2015 *)

Formula

a(n) ~ phi^(n+1/2) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 7/10 + 2*5^(-1/4)*phi*sqrt(n) + s), where s = Sum_{k>=2} (1 + 2*phi^k) / ((phi^(2*k) - phi^k - 1)*k) = 1.39069800276768443926918973402733105305129194986259856042723... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015