A260787 G.f.: Product_{k>=1} 1/(1-x^k)^Fibonacci(k+2).
1, 2, 6, 15, 38, 89, 210, 474, 1065, 2339, 5091, 10919, 23230, 48887, 102126, 211599, 435561, 890617, 1810786, 3661118, 7365473, 14747049, 29397160, 58356179, 115392801, 227332038, 446304671, 873298579, 1703463864, 3312873935, 6424553973, 12425158365, 23968214357, 46120280910, 88535346223
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..4450
- W. S. Gray, K. Ebrahimi-Fard, Affine SISO Feedback Transformation Group and Its Faa di Bruno Hopf Algebra, arXiv:1411.0222 [math.OC], 2014. See F_H.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
- Vaclav Kotesovec, Asymptotics of sequence A034691
Programs
-
Mathematica
CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+2], {k, 1, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
Formula
a(n) ~ phi^(n+1/2) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 7/10 + 2*5^(-1/4)*phi*sqrt(n) + s), where s = Sum_{k>=2} (1 + 2*phi^k) / ((phi^(2*k) - phi^k - 1)*k) = 1.39069800276768443926918973402733105305129194986259856042723... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015
Comments