This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260813 #24 Jun 03 2023 12:02:07 %S A260813 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,3,10,101,2510,79605,2607595, %T A260813 81716416,2472710752 %N A260813 Number of trivalent bipartite connected simple graphs with 2n nodes and girth at least 8. %C A260813 The null graph on 0 vertices is vacuously connected, 3-regular, and bipartite; since it is acyclic, it has infinite girth. %H A260813 G. Brinkmann, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199610)23:2<139::AID-JGT5>3.0.CO;2-U">Fast generation of cubic graphs</a>, Journal of Graph Theory, 23(2):139-149, 1996. %H A260813 G. Brinkmann, J. Goedgebeur and B.D. McKay, <a href="https://arxiv.org/abs/2101.00943">The Minimality of the Georges-Kelmans Graph</a>, arXiv:2101.00943 [math.CO], 2021. %H A260813 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/cubic#cubic_bipartite">Cubic bipartite graphs</a> %Y A260813 Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8). %Y A260813 Connected bipartite trivalent simple graphs with girth at least g: A006823 (g=4), A260811 (g=6), this sequence (g=8). %K A260813 nonn,more,hard %O A260813 0,19 %A A260813 _Dylan Thurston_, Jul 31 2015 %E A260813 a(23)-a(24) from the House-of-Graphs added by _R. J. Mathar_, Sep 29 2017 %E A260813 a(25)-a(26) from _Jan Goedgebeur_, Aug 17 2021