This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260824 #51 Mar 07 2021 09:24:22 %S A260824 3,7,110,40,392,894,315,48 %N A260824 Least positive integer b such that b^(2^n)+1 is not squarefree. %C A260824 For any n, a(n) <= A261117(n). %C A260824 The smallest square in the factors of b^(2^n)+1 are 2^2, 5^2, 17^2, 17^2, 769^2. - _Robert Price_, Mar 07 2017; edited by _Jeffrey Shallit_, May 10 2017 %C A260824 a(8) <= 50104 (corresponding square 10753^2). - _Jeffrey Shallit_, May 10 2017 %C A260824 Some better bounds than A261117(n): a(9) <= 65863 (factor 13313^2), a(12) <= 265801 (factor 65537^2), a(16) <= 1493667 (factor 1179649^2), a(18) <= 15834352 (factor 7340033^2), a(19) <= 15786037 (factor 23068673^2), a(21) <= 78597313 (factor 230686721^2), a(22) <= 13753565041 (factor 469762049^2), a(23) <= 6276931961 (factor 469762049^2). - _Max Alekseyev_, Feb 20 2018 %F A260824 a(n) = A248214(2^n). %e A260824 a(1) = A049532(1) = 7. %e A260824 For n=4, we consider b^16+1. The first time it is not squarefree is for b=392, where 392^16+1 is divisible by 769^2. So a(4)=392. %o A260824 (PARI) a(n) = for(b=1,10^42, !issquarefree(b^(2^n)+1) & return(b) ); %o A260824 (Python) %o A260824 from sympy.ntheory.factor_ import core %o A260824 def a(n): %o A260824 b, pow2, t = 1, 2**n, 2 %o A260824 while core(t, 2) == t: %o A260824 b += 1 %o A260824 t = b**(pow2) + 1 %o A260824 return b %o A260824 print([a(n) for n in range(4)]) # _Michael S. Branicky_, Mar 07 2021 %Y A260824 Subsequence of A248214. %Y A260824 Cf. A261117, A049532. %K A260824 hard,nonn,more %O A260824 0,1 %A A260824 _Jeppe Stig Nielsen_, Aug 04 2015 %E A260824 Edited and a(5)-a(7) added by _Max Alekseyev_, Feb 20 2018