This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260827 #17 Jul 20 2025 21:56:32 %S A260827 5,7,557,577,757,5077,5507,5557,7057,7507,7577,7757,50077,50707,50777, %T A260827 55057,57077,57557,70507,75557,75577,75707,77557,500057,500777,505777, %U A260827 507077,507557,507757,550007,550577,550757,555077,555557,555707,557057,570077,575077 %N A260827 Primes having only {0, 5, 7} as digits. %H A260827 Alois P. Heinz, <a href="/A260827/b260827.txt">Table of n, a(n) for n = 1..10000</a> %H A260827 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %t A260827 Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {0, 5, 7}]=={} &] %o A260827 (Magma) [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0,5,7]]; %o A260827 (Python) %o A260827 from sympy import isprime %o A260827 from sympy.utilities.iterables import multiset_permutations %o A260827 def aupton(terms): %o A260827 n, digits, alst = 0, 1, [] %o A260827 while len(alst) < terms: %o A260827 mpstr = "".join(d*digits for d in "057") %o A260827 for mp in multiset_permutations(mpstr, digits): %o A260827 if mp[0] == "0": continue %o A260827 t = int("".join(mp)) %o A260827 if isprime(t): alst.append(t) %o A260827 if len(alst) == terms: break %o A260827 else: digits += 1 %o A260827 return alst %o A260827 print(aupton(38)) # _Michael S. Branicky_, May 07 2021 %Y A260827 A020467 is a subsequence. %Y A260827 Cf. Primes that contain only the digits (k,5,7): this sequence (k=0), A260828 (k=1), A214705 (k=2), A087363 (k=3), A217039 (k=4), A260829 (k=6), A260830 (k=8), A260831 (k=9). %Y A260827 Cf. A000040. %K A260827 nonn,easy,base %O A260827 1,1 %A A260827 _Vincenzo Librandi_, Aug 01 2015