This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260828 #23 Jul 20 2025 18:02:12 %S A260828 5,7,11,17,71,151,157,557,571,577,751,757,1117,1151,1171,1511,1571, %T A260828 1777,5171,5557,5711,5717,7151,7177,7517,7577,7717,7757,11117,11171, %U A260828 11177,11551,11717,11777,15511,15551,17117,17551,51151,51157,51511,51517,51551,51577 %N A260828 Primes having only {1, 5, 7} as digits. %H A260828 Alois P. Heinz, <a href="/A260828/b260828.txt">Table of n, a(n) for n = 1..10000</a> %H A260828 James Maynard and Brady Haran, <a href="https://www.youtube.com/watch?v=eeoBCS7IEqs">Primes without a 7</a>, Numberphile video (2019) %H A260828 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %t A260828 Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {1, 5, 7}] == {} &] %o A260828 (Magma) [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [1,5,7]]; %o A260828 (Python) %o A260828 from sympy import isprime %o A260828 from sympy.utilities.iterables import multiset_permutations %o A260828 def aupton(terms): %o A260828 n, digits, alst = 0, 1, [] %o A260828 while len(alst) < terms: %o A260828 mpstr = "".join(d*digits for d in "157") %o A260828 for mp in multiset_permutations(mpstr, digits): %o A260828 t = int("".join(mp)) %o A260828 if isprime(t): alst.append(t) %o A260828 if len(alst) == terms: break %o A260828 else: digits += 1 %o A260828 return alst %o A260828 print(aupton(44)) # _Michael S. Branicky_, May 07 2021 %Y A260828 Subsequence of A030096. A020453, A020455 and A020467 are subsequences. %Y A260828 Cf. similar sequences listed in A260827. %Y A260828 Cf. A000040. %K A260828 nonn,easy,base %O A260828 1,1 %A A260828 _Vincenzo Librandi_, Aug 02 2015