A260875
Square array read by ascending antidiagonals: number of m-shape complementary Bell numbers.
Original entry on oeis.org
1, 1, -1, 1, -1, 0, 1, -1, 0, -1, 1, -1, 2, 1, 1, 1, -1, 9, -1, 1, -1, 1, -1, 34, -197, -43, -2, 1, 1, -1, 125, -5281, 6841, 254, -9, -1, 1, -1, 461, -123124, 2185429, -254801, 4157, -9, 2, 1, -1, 1715, -2840293, 465693001, -1854147586, -3000807, -70981, 50, -2
Offset: 1
[ n ] [ 0 1 2 3 4 5 6]
[ m ] --------------------------------------------------------
[ 0 ] [ 1, -1, 0, -1, 1, -1, 1] A081362
[ 1 ] [ 1, -1, 0, 1, 1, -2, -9] A000587
[ 2 ] [ 1, -1, 2, -1, -43, 254, 4157] A260884
[ 3 ] [ 1, -1, 9, -197, 6841, -254801, -3000807]
[ 4 ] [ 1, -1, 34, -5281, 2185429, -1854147586, 2755045819549]
A010763,
For example the number of set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 84, 280 respectively. Thus A(3,3) = -1 + 84 - 280 = -197.
Formatted as a triangle:
[1]
[1, -1]
[1, -1, 0]
[1, -1, 0, -1]
[1, -1, 2, 1, 1]
[1, -1, 9, -1, 1, -1]
[1, -1, 34, -197, -43, -2, 1]
[1, -1, 125, -5281, 6841, 254, -9, -1]
-
def A260875(m, n):
shapes = ([x*m for x in p] for p in Partitions(n))
return sum((-1)^len(s)*SetPartitions(sum(s),s).cardinality() for s in shapes)
for m in (0..4): print([A260875(m,n) for n in (0..6)])
A260877
Square array read by ascending antidiagonals: number of m-shape Euler numbers.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -1, 1, -5, 1, -1, 5, -1, 21, 1, -1, 19, -61, 1, -105, 1, -1, 69, -1513, 1385, -1, 635, 1, -1, 251, -33661, 315523, -50521, 1, -4507, 1, -1, 923, -750751, 60376809, -136085041, 2702765, -1, 36457, 1, -1, 3431, -17116009, 11593285251
Offset: 1
[ n ] [0 1 2 3 4 5 6]
[ m ] --------------------------------------------------------------
[ 0 ] [1, -1, 1, -5, 21, -105, 635] A260845
[ 1 ] [1, -1, 1, -1, 1, -1, 1] A033999
[ 2 ] [1, -1, 5, -61, 1385, -50521, 2702765] A028296
[ 3 ] [1, -1, 19, -1513, 315523, -136085041, 105261234643] A002115
[ 4 ] [1, -1, 69, -33661, 60376809, -288294050521, 3019098162602349] A211212
A030662,A211213, A181991,
For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 168, 1680 respectively. Thus A(3,3) = -1 + 168 - 1680 = -1513.
Formatted as a triangle:
[1]
[1, -1]
[1, -1, 1]
[1, -1, 1, -5]
[1, -1, 5, -1, 21]
[1, -1, 19, -61, 1, -105]
[1, -1, 69, -1513, 1385, -1, 635]
Cf.
A002115,
A028296,
A030662,
A033999,
A181991,
A211212,
A211213,
A260845,
A260833,
A260875,
A260876.
-
def A260877(m,n):
shapes = ([x*m for x in p] for p in Partitions(n).list())
return sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s). cardinality() for s in shapes)
for m in (0..5): print([A260877(m,n) for n in (0..7)])
Showing 1-2 of 2 results.
Comments