cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260841 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000001 00000011 or 00010101.

Original entry on oeis.org

48, 82, 82, 188, 131, 188, 364, 288, 288, 364, 644, 496, 700, 496, 644, 1320, 796, 1224, 1224, 796, 1320, 2584, 1645, 1560, 2235, 1560, 1645, 2584, 4842, 2976, 3470, 2590, 2590, 3470, 2976, 4842, 9412, 4890, 6908, 6232, 3828, 6232, 6908, 4890, 9412, 18210
Offset: 1

Views

Author

R. H. Hardin, Aug 01 2015

Keywords

Comments

Table starts
....48....82...188...364....644...1320...2584...4842....9412...18210...35192
....82...131...288...496....796...1645...2976...4890....9332...17659...30090
...188...288...700..1224...1560...3470...6908..10070...18716...39478...64940
...364...496..1224..2235...2590...6232..13170..17731...34192...77780..123488
...644...796..1560..2590...3828...8646..16000..24508...49816..103124..168848
..1320..1645..3470..6232...8646..19718..37882..58489..116930..248515..412314
..2584..2976..6908.13170..16000..37882..80516.119194..231008..526102..890868
..4842..4890.10070.17731..24508..58489.119194.181176..369672..835045.1415774
..9412..9332.18716.34192..49816.116930.231008.369672..766388.1697970.2896836
.18210.17659.39478.77780.103124.248515.526102.835045.1697970.3885356.6805170

Examples

			Some solutions for n=4 k=4
..1..1..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....0..0..1..1..0..1
..0..0..0..0..0..0....0..1..0..0..1..1....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..1..0....0..0..0..0..0..0....0..0..1..0..0..1....0..0..0..0..0..1
..1..1..0..0..1..0....0..0..0..0..0..0....0..0..1..0..0..1....0..1..1..0..0..0
..0..0..0..0..0..0....0..1..0..0..1..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....1..1..0..0..1..0....0..0..0..0..0..0....0..0..0..0..0..1
		

Formula

Empirical for column k:
k=1: [linear recurrence of order 14] for n>15
k=2: [order 18] for n>19
k=3: [order 22] for n>24
k=4: [order 33] for n>34
k=5: [order 59] for n>63
k=6: [order 92] for n>96