This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260845 #13 Sep 18 2019 14:28:50 %S A260845 1,-1,1,-5,21,-105,635,-4507,36457,-330971,3334377,-36913947, %T A260845 445426739,-5818545721,81805507069,-1231690773053,19772941871385, %U A260845 -337146625794753,6085005877228943,-115897323408009187,2323090928155541677,-48883768421712917555,1077440388662366900397 %N A260845 a(n) = Sum_{k=0..n} (-1)^k*P(n,k)*k!, where P(n,k) is the number of partitions of n into k parts. %H A260845 Alois P. Heinz, <a href="/A260845/b260845.txt">Table of n, a(n) for n = 0..449</a> %F A260845 G.f.: Sum(n!*(-x)^n/Product(1-x^k, k=1..n), n=1..infinity). %p A260845 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, %p A260845 b(n, i-1), 0)+expand(b(n-i, min(n-i, i))*x)) %p A260845 end: %p A260845 a:= n-> (p-> add(i!*coeff(p, x, i)*(-1)^i, i=0..n))(b(n$2)): %p A260845 seq(a(n), n=0..27); # _Alois P. Heinz_, Sep 18 2019 %t A260845 CoefficientList[ Series[ Sum[ n!(-x)^n / Product[1 - x^k, {k, n}], {n, 0, 22}], {x, 0, 22}], x] %o A260845 (Sage) %o A260845 from sage.combinat.partition import number_of_partitions_length %o A260845 [sum([(-1)^k*number_of_partitions_length(n,k)*factorial(k) for k in (0..n)]) for n in (0..22)] %Y A260845 Cf. A008284, A101880. %Y A260845 Row sums of A318144. %K A260845 sign %O A260845 0,4 %A A260845 _Peter Luschny_, Aug 01 2015