This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260848 #28 Jan 25 2025 13:55:47 %S A260848 1,2,1,6,6,1,21,64,36,0,99,559,772,108,0,588,5656,14544,7222,0,0,3829, %T A260848 56528,246092,277114,34680,0,0,27404,581511,3900698,8180123,3534038,0, %U A260848 0,0,206543,6020787,58838383,203964446,198551464,22521600,0,0,0 %N A260848 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is oriented). %C A260848 When transposed, displayed as an upper right triangle, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc. %C A260848 Row g=0 is A008987 starting with n = 1. %C A260848 For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - _Robert Coquereaux_, Nov 23 2015 %H A260848 R. Coquereaux and J.-B. Zuber, <a href="http://arxiv.org/abs/1507.03163">Maps, immersions and permutations</a>, arXiv:1507.03163 [math.CO], 2015, Table 9. %e A260848 The transposed triangle starts: %e A260848 1 2 6 21 99 588 3829 27404 206543 %e A260848 1 6 64 559 5656 56528 581511 6020787 %e A260848 1 36 772 14544 246092 3900698 58838383 %e A260848 0 108 7222 277114 8180123 203964446 %e A260848 0 0 34680 3534038 198551464 %e A260848 0 0 0 22521600 %e A260848 0 0 0 %e A260848 0 0 %o A260848 (Magma) /* Example n := 6 */ %o A260848 n:=6; %o A260848 n; // n: number of crossings %o A260848 G:=Sym(2*n); %o A260848 doubleG := Sym(4*n); %o A260848 genH:={}; %o A260848 for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; %o A260848 H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) %o A260848 cardH:=#H; %o A260848 cardH; %o A260848 rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; %o A260848 cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) %o A260848 Hcycrho:=sub<G|[H,cycrho]>; // The subgroup generated by H and cycrho %o A260848 cardZp:= Factorial(2*n-1); %o A260848 beta:=G!Append([2..2*n],1); // A typical circular permutation %o A260848 Cbeta:=Centralizer(G,beta); %o A260848 bool, rever := IsConjugate(G,beta,beta^(-1)); %o A260848 cycbeta := PermutationGroup< 2*n |{rever}>; %o A260848 Cbetarev := sub<G|[Cbeta,cycbeta]>; %o A260848 psifct := function(per); %o A260848 perinv:=per^(-1); %o A260848 res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; %o A260848 resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; %o A260848 res cat:= resbis; %o A260848 return doubleG!res; %o A260848 end function; %o A260848 numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; %o A260848 supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; %o A260848 // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus %o A260848 // Case UO %o A260848 dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbetarev); #dblsize; %o A260848 genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; %o A260848 quit; %o A260848 // _Robert Coquereaux_, Nov 23 2015 %Y A260848 The sum over all genera g for a fixed number n of crossings is given by sequence A260847. %Y A260848 Cf. A008987, A260285, A260885, A260914. %K A260848 nonn,tabl,hard %O A260848 1,2 %A A260848 _Robert Coquereaux_, Aug 01 2015