A260850 Lexicographically earliest sequence such that for any n>1, n=u*v, where u/v = a(n)/a(n-1) in reduced form.
1, 2, 6, 24, 120, 20, 140, 1120, 10080, 1008, 11088, 924, 12012, 858, 1430, 22880, 388960, 1750320, 33256080, 1662804, 3879876, 176358, 4056234, 10816624, 270415600, 10400600, 280816200, 10029150, 290845350, 9694845, 300540195, 9617286240, 35263382880
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Apr 12 2024: (Start) Table showing exponents m of prime powers p^m | a(n), n = 1..20, with "." representing p < gpf(n) does not divide a(n): 1111 n a(n) 23571379 ------------------------ 1 1 . 2 2 1 3 6 11 4 24 31 5 120 311 6 20 2.1 7 140 2.11 8 1120 5.11 9 10080 5211 10 1008 42.1 11 11088 42.11 12 924 21.11 13 12012 21.111 14 858 11..11 15 1430 1.1.11 16 22880 5.1.11 17 388960 5.1.111 18 1750320 421.111 19 33256080 421.1111 20 1662804 22..1111 (End)
Links
- Paul Tek, Table of n, a(n) for n = 1..3365
- Paul Tek, PARI program for this sequence
- Michael De Vlieger, Plot p(i)^m(i) | a(n) at (x,y) = (n,i), n = 1..2048, 3X vertical exaggeration, with a color function showing m(i) = 1 in black, m(i) = 2 in red, ..., largest m(i) in the dataset in magenta.
- Michael De Vlieger, Prime Power Decomposition of a(n), n = 1..1000.
Programs
-
Mathematica
nn = 35; p[_] := 0; r = 0; Do[(Map[If[p[#1] < #2, p[#1] += #2, p[#1] -= #2] & @@ # &, #]; If[r < #, r = #] &[#[[-1, 1]] ] ) &@ Map[{PrimePi[#1], #2} & @@ # &, FactorInteger[n]]; a[n] = Times @@ Array[Prime[#]^p[#] &, r], {n, nn}]; Array[a, nn] (* Michael De Vlieger, Apr 12 2024 *)
-
PARI
\\ See Links section.
Formula
a(p) = p*a(p-1) for any prime p.
a(n) = A008336(n+1) for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23; are there other indices with this property?