A260855 Base-5 representation of a(n) is the concatenation of the base-5 representations of 1, 2, ..., n, n-1, ..., 1.
0, 1, 36, 961, 24336, 3034961, 1896581836, 1185364159961, 740852620019336, 463032888020409961, 289395555025471581836, 180872221891237629784961, 113045138682031465901269336, 70653211676269864870442284961, 44158257297668670511080159081836
Offset: 0
Examples
a(0) = 0 is the result of the empty sum corresponding to 0 digits. a(2) = 36 = (5+1)^2 = 5^2 + 2*5 + 1 = 121_4 is the concatenation of (1, 2, 1). a(5) = 3034961 = 1234104321_5 is the concatenation of (1, 2, 3, 4, 10, 4, 3, 2, 1), where the middle "10" is the base-5 representation of 5.
Links
- D. Broadhurst, Primes from concatenation: results and heuristics, NmbrThry List, August 1, 2015
Programs
-
PARI
a(n,b=5)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
Comments