A260856 Base-6 representation is the concatenation of the base-6 representations of 1, 2, ..., n, n-1, ..., 1.
0, 1, 49, 1849, 67081, 2418025, 522134761, 676678989289, 876975982612969, 1136560874204496361, 1472982892995886760425, 1908985829323636470956521, 2474045634803467686907986409, 3206363142705295375772778742249, 4155446632946062852128962559066601
Offset: 0
Examples
a(0) = 0 is the result of the empty sum corresponding to 0 digits. a(2) = 49 = (6+1)^2 = 6^2 + 2*6 + 1 = 121_6 is the concatenation of (1, 2, 1). a(7) = 676678989289 = 1234510111054321_6 is the concatenation of (1, 2, 3, 4, 5, 10, 11, 10, 5, 4, 3, 2, 1), where the middle "10, 11, 10" are the base 6 representations of 6, 7, 6.
Links
- D. Broadhurst, Primes from concatenation: results and heuristics, NmbrThry List, August 1, 2015
Crossrefs
Programs
-
PARI
a(n,b=6)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))