cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260859 Base-9 representation of a(n) is the concatenation of the base-9 representations of 1, 2, ..., n, n-1, ..., 1.

Original entry on oeis.org

0, 1, 100, 8281, 672400, 54479161, 4412944900, 357449732641, 28953439105600, 21107054541321649, 138483384602892402628, 908589486379899193778809, 5961255620138564686107812272, 39111798123729126657669459066697, 256612507489786800304910707633347364
Offset: 0

Views

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

The base 9 is listed in A260343, because a(9) = A260851(9) = 21107054541321649 = 123456781087654321_9 is prime and therefore in A260852. See these sequences for more information.

Examples

			a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 100 = (9+1)^2 = 9^2 + 2*9 + 1 = 121_9, concatenation of (1, 2, 1).
a(10) = 1234567810111087654321_9 is the concatenation of (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 10, 8, 7, 6, 5, 4, 3, 2, 1), where the middle "10, 11, 10" are the base-9 representations of 9, 10, 9.
		

Crossrefs

Base-9 variant of A173426 (base 10) and A173427 (base 2). See A260853 - A260866 for the variants in other bases.

Programs

  • PARI
    a(n,b=9)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))

Formula

For n < b = 9, we have a(n) = A_b(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.